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Abstract
Objectives This study aimed to evaluate the accuracy and reliability of convolutional neural networks (CNNs) for the detec-
tion and classification of mandibular fracture on spiral computed tomography (CT).
Materials and methods Between January 2013 and July 2020, 686 patients with mandibular fractures who underwent CT 
scan were classified and annotated by three experienced maxillofacial surgeons serving as the ground truth. An algorithm 
including two convolutional neural networks (U-Net and ResNet) was trained, validated, and tested using 222, 56, and 408 
CT scans, respectively. The diagnostic performance of the algorithm was compared with the ground truth and evaluated by 
DICE, accuracy, sensitivity, specificity, and area under the ROC curve (AUC).
Results One thousand five hundred six mandibular fractures in nine subregions of 686 patients were diagnosed. The DICE 
of mandible segmentation using U-Net was 0.943. The accuracies of nine subregions were all above 90%, with a mean AUC 
of 0.956.
Conclusions CNNs showed comparable reliability and accuracy in detecting and classifying mandibular fractures on CT.
Clinical relevance The algorithm for automatic detection and classification of mandibular fractures will help improve diag-
nostic efficiency and provide expertise to areas with lower medical levels.

Keywords Artificial intelligence · Deep learning · Convolutional neural network · Mandibular fracture · Computed 
tomography

Introduction

The mandible is the only movable bone located in a promi-
nent part of the maxillofacial region; therefore, it is vulner-
able to external forces [1, 2]. Mandibular fracture has the 
highest incidence in the maxillofacial region [3]. Correct 
diagnosis is critical for treatment decisions. The treatment 
protocols, surgical approach, and fixation materials are 
closely related to the regions and complexity of mandibu-
lar fracture. Computed tomography (CT) provides oral and 
maxillofacial surgeons with a more intuitive understanding 
about the position, displacement, and relationship of fracture 
fragments. Therefore, CT scan is considered to be the best 
diagnostic tool for fracture diagnosis [4]. However, CT con-
tains a large amount of information. Analyzing large num-
bers of medical images manually is often a time-consuming 
and laborious process [5, 6].

Convolutional neural networks (CNNs), as the most suc-
cessful application of deep learning and the most widely 
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used model in medical image analysis, have shown excel-
lent image processing capabilities [7]. In recent years, CNN 
has been widely used in fracture detection and classification 
on radiographs or CT scans, and some studies have proven 
that it has equivalent [8–11] or even superior abilities than 
experts [12]. Moreover, it effectively improves accuracy and 
decreases the diagnosis time and can be used to assist physi-
cians in diagnosis [13, 14]. All these results have proven the 
feasibility of CNN in fracture detection.

This study aimed to train and validate the first CNN-based 
approach for the detection and classification of CT images.

Materials and methods

This retrospective study was approved by the Ethics Com-
mittee of Peking University School and Hospital of Stoma-
tology (protocol No. PKUSSIRB-202054056) and was 
conducted in accordance with the relevant guidelines and 
regulations.

Demographics of patients

The data of all patients who underwent CT scans using 
a 16-slice CT scanner (Optima CT 520; GE Healthcare, 
Waukesha, WI) with 1.25-mm slice thickness at Peking 
University School and Hospital of Stomatology between 
January 2013 and July 2020 were extracted according to the 
following criteria.

The inclusion criteria were (i) Chinese, aged from 18 to 
80 years; (ii) history of mandible fracture within 15 days; 
(iii) no history of maxillofacial tumor; (iv) no systemic bone 
metabolic disease; (v) no maxillofacial deformity; and (vi) 
no history of radiotherapy or chemotherapy. The exclusion 
criteria were (i) congenital facial asymmetry, such as severe 
jaw deviation and nasal septum deviation; (ii) a history of 
maxillofacial hard tissue surgery; (iii) delayed or green 
branch fractures; and (iv) identifiable history of mandibular 
surgery, bone tumor, bone metabolic disease, etc.

We finally extracted the data of 686 patients, includ-
ing 497 males and 189 females, with an average age of 
35.74 ± 12.86 years. The CT data used in this study were 
selected from a database with data desensitization technique. 
Patients’ private information, such as name, address, and 
phone numbers, were masked.

Image annotation

Subregion segmentation

CT data of 278 patients were randomly selected from all 
included CT data and were synthesized into panoramic 
radiograph (refer to the following section of mandible 

anatomical region segmentation and extraction). Each sub-
region was drawn on the panoramic radiograph using VGG 
Image Annotator 2.0.1 (Visual Geometry Group) accord-
ing to the mandibular fracture classification by Kelly et al. 
[15] (Fig. 1A–C). The parameter relationship between the 
original CT and the synthesized panoramic image is shown 
in Fig. 2.

Fig. 1  Annotation of the mandibular subregions. A Mandibular sym-
physis fracture. B Left parasymphysis, body, and condyle fracture. C 
Left mandibular angle fracture
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Mandibular fracture classification

All the CT data of the included patients were imported into 
Mimics Medical 21.0 (Materialise HQ Technologielaan, 
Leuven, Belgium) in DICOM format for observation and 
annotation by three experienced surgeons.

The annotated content mainly included two parts: (i) the 
number of axial layers where fracture lines were located 
and (ii) the mandibular fracture location information 
according to the classification by Kelly et al. (Table 1) [15].

For any fracture line that spanned more than one sub-
region, the fracture was recorded in each area [16]. The 
majority opinion of three experienced maxillofacial sur-
geons was selected as the final label result.

Convolutional neural network training

The 686 annotated CT scans were divided into three subsets: 
a training set with 222 (32.4%) CT scans, a validation set with 
56 (8.2%) CT scans, and a test set with 408 (59.5%) CT scans.

As shown in Fig. 3, the workflow consisted of four steps. 
The first step was to obtain the synthesized panoramic radio-
graph (Fig. 3b) and straighten the mandible region slices 
(Fig. 3c) from the original CT scan. The second step was to 
detect nine anatomical regions (middle/right/left symphysis, 
right/left body, right/left angle, right/left condylar process) 
of the mandible on the synthesized panoramic radiograph 
image by applying a U-Net segmentation model. Thereafter, 
the image patches (Fig. 3f) of these nine mandible anatomi-
cal regions were extracted based on the generated straight-
ened mandible region slices and segmentation results. The 
last step was to detect the fracture by applying a patch-wise 
based classification model (ResNet-50). The final detection 
result of a specific anatomical region of the mandible was 
obtained by fusing multiple patch-level detection results.

Segmentation and extraction of mandible anatomical 
regions

The CT scans used in this study had a large field of view and 
covered most of the craniofacial skeleton (mandible, max-
illa, zygoma, teeth, etc.). Therefore, mandible region detec-
tion was crucial for accurate mandible fracture detection. To 
achieve accurate localization of nine anatomical regions of 
the mandible, we first obtained the synthesized panoramic 
radiograph and corresponding straightened mandible slices 
of a given CT scan as previously described [17]. Then, we 
trained a semantic segmentation model, which automatically 
extracted different anatomical regions of the mandible on the 
synthesized panoramic radiograph. As U-Net [18] architec-
ture has achieved outstanding performance on many medical 
image segmentation tasks [18, 19], we selected U-Net as the 
segmentation model.

The U-Net model was trained using 222 panoramic radio-
graphs, which were synthesized from 222 training CT scans. 
Both the panoramic radiographs and their corresponding 
ground-truth annotation masks were resized to a resolution 
of 768 × 768 for training and validation purposes. To control 

Fig. 2  The parameter relationship between original CT and synthe-
sized panoramic images

Table 1  Mandibular subregions and definitions [15]

Fracture types Definition

Symphysis fracture The fracture occurred in the incisor area, extending from the alveolar process to the lower edge of the mandible
Parasymphysis fracture The fracture occurred between the distal of mandibular incisor and the mental foramen
Body fracture The fracture occurred between the mental foramen and the distal of the mandibular second molar
Angle fracture The fracture occurred in the distal of mandibular second molar, the fracture lines extending from any point on the 

curve between the distal of mandibular second molar and the anterior edge of ramus to any point on the curve 
formed by the curve between mandibular lower edge and the posterior edge of the ramus

Ramus fracture The fracture lines cross the anterior to posterior edge of the mandibular ramus horizontally or run vertically down-
ward from the sigmoid notch to the mandibular lower edge

Condyle fracture The fracture line extended from the sigmoid notch along the upper part of the mandibular ramus to the posterior edge 
of the mandibular ramus

Coronoid process fracture The fracture occurred in the coronoid process
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the tradeoff between the false negatives and positives while 
simultaneously enforcing a smooth training, we applied 
combo loss [20] (a weighted sum of soft Dice loss and cross-
entropy loss) as the loss function. The U-Net model was 
trained for 50 epochs (an epoch is a single pass through the 
full training set) with the initial learning rate set to 0.0003 
using the AdamW optimizer [21]. The batch size was set to 
2 and the weight decay parameter was set to 1e-5. The Dice 
coefficient [22] (DICE), also called the overlap index, is the 
most commonly used metric for validating medical image 
segmentation. The DICE is calculated as follows:

where SD and SGT represent the areas of the segmented mask 
and its corresponding ground-truth mask. The average Dice 
coefficient on 56 validation images was 0.943 after the 
model was appropriately trained.

After obtaining segmentation results of anatomical 
regions, we applied morphological dilation to obtain the 
dilated segmentation masks. Furthermore, the dilated seg-
mentation masks were masked to the generated straightened 
mandible slices to obtain image patches (Fig. 3f) of different 
anatomical regions.

(1)DICE =
2(S

D
∩ S

GT
)

S
D
+ S

GT

Mandible fracture detection

Once the image patches of anatomical regions were acquired, 
they were fed into a convolutional neural network (CNN) 
model for fracture detection (fracture or normal) training. 
Given that the semantic features of fractures in different 
regions are similar, we only trained one CNN model. The 
deep residual network (ResNet) [23] is one of the most popu-
lar architectures in various computer vision tasks. Therefore, 
we selected ResNet as the fracture detection model. As the 
fracture line can be very small in some cases, we proposed 
using patch-wise classification rather than 3D classifica-
tion to improve the sensitivity of the model. The pre-trained 
ResNet-50 model on the ImageNet dataset [24] was used in 
this study to accelerate the convergence of the model.

The ResNet-50 model was trained on 33,966 (generated 
from 222 training CT scans) patch images. The patch images 
were padded to square and then resized to a resolution of 
400 × 400 for training and validation purposes. To train the 
classification model, the cross-entropy loss was adopted as 
the loss function with the label smoothing technique [25]. The 
model was trained for 30 epochs with the initial learning rate 
being set to 0.0001 using the AdamW optimizer. The batch 
size was set to 32, and the weight decay parameter was set to 
5e-4. The F1 score was used to evaluate the performance. It 
can be calculated as follows:

Fig. 3  The pipeline of our proposed mandibular fracture detection method

4596 Clinical Oral Investigations (2022) 26:4593–4601



1 3

where NTP represents the number of true positives, NFP rep-
resents the number of false positives, and NFN represents the 
number of false negatives. After training, F1 of 0.9512 was 
achieved on 8613 validation patch images (generated from 
56 validation CT scans).

At the inference phase, every extracted patch image was 
sequentially fed into the trained ResNet-50 model to obtain 
nine binary sequences (corresponding to nine anatomi-
cal regions of the mandible). For each binary sequence, we 
designed a simple fusion rule to generate the final fracture 
detection result. The rule was as follows: for each sequence, 
if the number of 1 was greater than K, the final result was 
fracture; otherwise, the result was normal. When K was set 
to 2, we achieved the highest F1 (0.9607) on 56 × 9 regions.

Results

Mandible fracture classification

The number of mandible fractures of each subregion obtained 
after an annotation is shown in Table 2.

Performance of CNNs

The average Dice coefficient on 56 validation images for man-
dibular subregion segmentation was 0.943, after the model was 
appropriately trained.

ResNet was used to detect mandible fracture lines in the 
test set, which consisted of 408 mandible fracture cases. The 
number of mandible fractures used for training, validating, and 
testing in each subregion is shown in Table 3. The area under 
the ROC curve (AUC), accuracy, sensitivity, and specificity 
were measured. The performance is summarized in Table 4. 
The accuracies of nine subregions were all above 90%, with 
an average AUC of 0.956.

Discussion

The mandible is the only movable bone in the maxillofacial 
region, and its position is relatively prominent. It is suscep-
tible to fractures caused by forces including traffic accidents, 
attacks, falls, and sports injuries [26]. According to statistics 

(2)Precision =
N
TP

N
TP

+ N
FP

(3)Recall =
N
TP

N
TP

+ N
FN

(4)F1 =
2 × Precision × Recall

Precision + Recall

from different countries, the incidence of maxillofacial frac-
tures varies from 24.30 to 81.28% [26–28].

The anatomical region and complexity of mandible 
fractures significantly affect the choice of treatment and 
fixation materials. Imageology is one of the most important 
methods to diagnose mandible fractures, and CT scanning 
is considered the gold standard tool for correct diagnosis 
[4]. Nevertheless, fracture is one of the most easily missed 
types in radiological diagnosis [29]. The lack of professional 
knowledge and long working hours can lead to human diag-
nosis errors [30, 31], and the daily real-time error rate can 
reach 3–5% [32]. However, machines are not limited in this 
respect, and they can make quick and accurate diagnosis 
even while processing a large amount of data [9]. Therefore, 
we wanted to use artificial intelligence to achieve efficient 
and accurate automatic detection of mandibular fractures 
based on the anatomical classification by Kelly et al. [15].

Convolutional neural network (CNN) has been used for 
medical image analysis since the 1990s [7]. Since the devel-
opment of computer technology provides technical support 
for deeper neural networks, CNN can deal with more com-
plex problems [33] and is currently a leader in image pro-
cessing problems [7, 34]. Many studies have used CNN in 
the diagnosis and classification of fractures in recent years 
[8–14]. This was the first study to propose a deep learning 
framework to detect and classify mandibular fractures in 
CT scans.

In this study, U-Net was used for segmentation, and 
ResNet was used for fracture detection. U-Net [18] is a 
U-shaped architecture network proposed by Ronneberger 
et al. based on the “full convolutional network.” It is the most 
famous network currently used in medical image segmen-
tation tasks and has shown good performance in multiple 

Table 2  Distribution of mandibular fractures according to the classifi-
cation [15] in 686 patients

Fracture types Number

Symphysis fracture 375
Left parasymphysis fracture 153
Right parasymphysis fracture 199
Left body fracture 66
Right body fracture 75
Left angle fracture 67
Right angle fracture 47
Left condyle fracture 251
Right condyle fracture 273
Left ramus fracture 24
Right ramus fracture 7
Left coronoid process fracture 13
Right coronoid process fracture 8
Total 1558
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bone segmentation tasks [35–37]. ResNet was used in previ-
ous studies related to fractures. Chung et al. [9] trained the 
ResNet to detect and classify proximal humeral fractures on 
the X-ray. The accuracy of fracture detection was 96%, and 
the CNN also showed superiority for the classification of 
fractures compared to the human groups. Tomita et al. [10] 
used a combination of recurrent neural network (RNN) and 
ResNet to detect osteoporotic vertebral fractures (OVFs) in 
CT and achieved an accuracy of 89.2%. Pranata et al. [38] 
compared the results of detecting calcaneal fractures in CT 
with ResNet and VGG, the accuracies were both 98%, and 
ResNet showed better performance as it has deeper neural 
network architecture. Olaczak et al. [39] applied a modified 
ResNet model to classify ankle fractures and obtained an 
average AUC of 0.90 (95% CI 0.82–0.94).

The mandible is an irregular bone. In this study, we used 
the synthesized panoramic radiographs and corresponding 
new CT scans of the straightened mandible in order to make 
more intuitive region segmentation. Thereafter, we input the 
new CT data into U-Net and trained for mandible subre-
gion segmentation and ResNet for fracture line detection for 
obtaining the final results. The results showed that the auto-
matic segmentation of the mandible using U-Net achieved a 
high DICE of 0.943. The accuracies of the mandible fracture 

detection in the nine subregions were from 93.87 to 98.28%, 
with an average AUC of 0.956. As shown in Table 4, the 
results proved the feasibility of U-Net and ResNet in auto-
matically detecting and classifying mandibular fractures in 
CT.

We analyzed the following possible causes for misdiag-
nosed cases. First, there were no clear boundaries between 
the adjacent subregions of the mandible. According to the 
classification of mandible fractures by Kelly et al. [15], the 
symphysis and parasymphysis are divided by distal man-
dibular lateral incisors, and the mental foramen divides the 
parasymphysis and mandibular body. The dividing lines 
between adjacent regions of the mandible are imaginary 
lines based on some anatomical landmarks (such as mental 
foramen, lateral incisor, the second molar), and there are 
no specific anatomical structures for demarcating condyles, 
coronoid process, and mandibular ramus. Although the 
algorithm segmentation results coincide with the artificial 
segmentation results, they cannot achieve 100% replication. 
Hence, there was no controversy about the fracture line that 
is entirely in a certain region or clearly across the dividing 
lines. However, the fracture lines on the dividing line cause 
divergence between the physician and the algorithm. In addi-
tion, in the cases of incorrect diagnosis of mandibular angle 

Table 3  Distribution of 
mandibular fractures in nine 
subregions in different datasets

Fracture types Training set (N = 222) Validation set (N = 56) Test set (N = 408)

Positive Negative Positive Negative Positive Negative

Symphysis 122 100 30 26 222 186
Left parasymphysis 53 169 15 41 85 323
Right parasymphysis 58 164 14 42 126 282
Left body 24 198 7 49 35 373
Right body 29 193 9 47 37 371
Left angle 20 202 8 48 40 368
Right angle 21 201 6 50 19 389
Left condyle 77 145 17 39 158 250
Right condyle 86 136 24 32 164 244
Total 490 1508 130 374 886 2786

Table 4  Results of the test set Fracture types Accuracy (%) Sensitivity (%) Specificity (%) AUC (95% Cl)

Symphysis 93.87 95.95 91.40 0.937 (0.909 ~ 0.965)
Left parasymphysis 94.36 92.06 95.39 0.931 (0.893 ~ 0.970)
Right parasymphysis 94.61 90.59 95.67 0.937 (0.906 ~ 0.968)
Left body 97.79 97.30 97.84 0.972 (0.939 ~ 1.000)
Right body 97.30 97.14 97.32 0.976 (0.944 ~ 1.000)
Left angle 98.28 94.74 98.46 0.950 (0.902 ~ 0.999)
Right angle 97.06 92.50 97.55 0.966 (0.907 ~ 1.000)
Left condyle 97.79 95.73 99.18 0.958 (0.933 ~ 0.983)
Right condyle 96.57 92.41 99.20 0.975 (0.955 ~ 0.994)
Mean AUC 0.956
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fractures, we have found another pattern. The condition that 
the fracture lines run vertically downward from the sigmoid 
notch to the lower edge of the mandible is defined as the 
ramus fracture (Fig. 4). The lower fracture line of this type 
often passes through the mandibular angle region. Based on 
our algorithm, once a fissure is detected in a certain region, 
this region is considered to have a fracture. Consequently, 
some ramus fractures were misidentified as angle fractures.

Doctors need time to acquire professional knowledge. 
Using algorithms with learned professional knowledge for 
automatic diagnosis of fractures would be useful in regions 
lacking experienced doctors. The existence and location of 
mandibular fracture lines were illustrated in this preliminary 
study. On the basis of this study, the morphology of man-
dibular fractures will be described in future studies. Condy-
lar fracture is a unique type of mandibular fracture whether 
from clinical management or the development of artificial 
intelligence algorithms. More factors should be considered, 
such as dislocation, angulation, and ramus height loss. For 
this reason, the work from classification to the labeling of 
condylar fracture and mandibular fracture is totally different, 
and the morphology of both will be described, respectively.

This study had several limitations. In terms of the scope 
of application, the data used in this study were all obtained 
from Peking University School and Hospital of Stoma-
tology. This algorithm requires a comparable level of 
accuracy for data obtained from other machines. For deep 
learning, the larger the training sample size, the higher 
the credibility of the algorithm [5, 11, 34]. However, due 
to the low incidence of the coronoid process fractures and 
the mandibular ramus fractures, the sufficient number of 
datasets has not been established in this study. Further-
more, the alveolar process fracture is different from any 

other site of the mandible. It refers specifically to a frac-
tured segment that is bordered between two distinct verti-
cal fracture lines at a variable distance from each other 
and by an interconnecting horizontal fracture line running 
through the apical base and is documented by the FDI 
numbers of the involved teeth, to be used for providing 
information about the location and extent of the fracture 
[40]. Therefore, this algorithm based on the segmentation 
of the mandibular basal bone is unsuitable for alveolar pro-
cess fractures. Collecting more cases of coronoid process 
fractures and mandibular ramus fractures and developing 
new algorithms for alveolar process fractures are needed 
in the future.

In conclusion, this study demonstrated that CNN 
showed comparable reliability and accuracy in detecting 
and classifying mandibular fractures. The algorithm pro-
posed in this study can be useful for the automated diag-
nosis and classification of mandibular fractures.
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