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Objectives: Machine learning is increasingly being used in the medical field. Based on
machine learning models, the present study aims to improve the prediction performance of
craniodentofacial morphological harmony judgment after orthodontic treatment and to
determine the most significant factors.

Methods: A dataset of 180 subjects was randomly selected from a large sample of 3,706
finished orthodontic cases from six top orthodontic treatment centers around China.
Thirteen algorithms were used to predict the value of the cephalometric morphological
harmony score of each subject and to search for the optimal model. Based on the feature
importance ranking and by removing features, the regression models of machine learning
(including the Adaboost, ExtraTree, XGBoost, and linear regression models) were used to
predict and compare the score of harmony for each subject from the dataset with cross
validations. By analyzing the prediction values, the most optimal model and the most
significant cephalometric characteristics were determined.

Results: When nine features were included, the performance of the XGBoost regression
model was MAE = 0.267, RMSE = 0.341, and Pearson correlation coefficient = 0.683,
which indicated that the XGBoost regression model exhibited the best fitting and
predicting performance for craniodentofacial morphological harmony judgment. Nine
cephalometric features including L1/NB (inclination of the lower central incisors), ANB
(sagittal position between the maxilla and mandible), LL-EP (distance from the point of the
prominence of the lower lip to the aesthetic plane), SN/OP (inclination of the occlusal
plane), SNB (sagittal position of the mandible in relation to the cranial base), U1/SN
(inclination of the upper incisors to the cranial base), L1-NB (protrusion of the lower central
incisors), Ns-Prn-Pos (nasal protrusion), and U1/L1 (relationship between the protrusions
of the upper and lower central incisors) were revealed to significantly influence the
judgment.

Conclusion: The application of the XGBoost regression model enhanced the predictive
ability regarding the craniodentofacial morphological harmony evaluation by experts after
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orthodontic treatment. Teeth position, teeth alignment, jaw position, and soft tissue
morphology would be the most significant factors influencing the judgment. The
methodology also provided guidance for the application of machine learning models to
resolve medical problems characterized by limited sample size.

Keywords: cephalometric analysis, facial harmony, machine learning, malocclusion, orthodontic treatment

1 INTRODUCTION

Malocclusion has been considered to be highly prevalent and
can affect oral and facial aesthetics as well as psychosocial
wellbeing in the long term (Borzabadi-Farahani, 2012;
Vellappally et al., 2014). It was claimed that the facial
features, especially oral aesthetics, had the potential to
influence self-perceived appearance, especially during the
phase of life with intense social and affective interaction
(Burden, 2007). Patients seeking orthodontic treatment aim
to improve their dental aesthetics and facial balance (Turley,
2015; Singh et al., 2021). As a standardized method,
cephalometric analysis is routinely used to investigate the
interrelationship among craniofacial bony and soft tissue
landmarks and is employed as a treatment planning and
evaluation tool by orthodontists, based on cephalometric
radiographs before and after orthodontic treatment. It is
usually based on a comparison of the values obtained from
certain measurements in a group of individuals with the
average values from their populations, which is set as the
normal or average value. The distance and angle deviations
among cephalometric landmarks for patients are compared
with this value to determine whether any skeletal or dental
aberration exists. However, it might be misleading to
practitioners that the process of orthodontic treatment is to
“correct the abnormal values for each patient.” Actually, facial
morphology varies in the size, shape, and position of the
dentoskeletal structures for each individual, and the
combinations of these morphological components are
extremely diverse as well. It is important to understand that
the aim of orthodontic treatment is to move teeth to a
physiologically stable position and to balance the
relationship within morphological components (Xu, 2017).

There has been a vast array of methods of cephalometric
analysis during the past decades (Steiner, 1953; Downs, 1956;
Ricketts, 1961; Tweed, 1969). Each method has some merits but
may not be applicable in all cases. For a beginner in the field of
orthodontics, it might be difficult to choose a certain method of
cephalometric analysis that performs the best combination of the
landmarks in a specific case. As practical training and clinical
experience accumulate, clinicians will then be gradually familiar
with eachmethod of cephalometric analysis, which is useful in the
understanding of specific morphological types and deformities.
Based on accumulation by analyzing tens of thousands of
patients, orthodontic experts could make validating judgments
about patients’ morphological harmony when reading end-of-
treatment cephalometric films. A panel of orthodontic experts
from similar education and practicing backgrounds could reach
an agreement on the perception of the harmonious relationship

between the dentition and the facial configuration (Song et al.,
2013, 2014).

When experts evaluate cephalometric morphological
harmony, various landmarks and components of
cephalometric films are concerned. However, among them,
which are the most noteworthy and important features is
unclear. The aim of this study is to determine the key
characteristics of greatest concern when experts
comprehensively value the various landmarks and components
of cephalometric films. It may give researchers further ideas about
how to improve the method that represents the evaluation and
delivers the thoughts of experts more effectively and precisely.
Solving these problems will also help beginners to obtain a
thorough understanding of balanced dental, jaw, and facial
relationships after orthodontic treatment and could further
improve the existing evaluation system for orthodontic
treatment outcomes.

Nowadays, machine learning is increasingly being used in the
medical field ranging from medical image processing and the
diagnosis of specific diseases to the broader tasks of decision
support and outcome prediction (Hammond et al., 2001; Rubin
et al., 2017; Torlay et al., 2017; Lee et al., 2018; Livne et al., 2018;
Vaquerizo-Villar et al., 2018;Wang et al., 2018; Chang et al., 2019;
Dinh et al., 2019; Xu et al., 2019; Suhail et al., 2020; Verma et al.,
2020; You et al., 2020). However, machine learning methods are
rarely applied to evaluate craniodentofacial morphological
harmony after orthodontic treatment. The present study aims
to predict the evaluation of orthodontic experts and focuses on
predictive modeling of applications characterized by small
datasets and real-numbered continuous outputs, based on
machine learning models. Such tasks, in terms of predicting
the evaluation of orthodontic experts, are mostly approached
by using conventional multiple linear regression models, which
are based on the assumptions of statistical independence of the
input variables, linearity between dependent and independent
variables, normality of the residuals, and the absence of
endogenous variables. However, in many applications,
particularly in those involving complex physiological
parameters such as values of cephalometric analysis, these
assumptions are often violated (Takada et al., 2000; Lee et al.,
2014, 2018). This situation would necessitate more sophisticated
regression models such as machine learning, in which the system
can constantly update the models through new samples to
improve the efficiency and accuracy of evaluation.

In order to explore the best-fitted modeling to predict the
evaluation of orthodontic experts, several such systems including
linear models, SVMs, decision trees, ANNs (artificial neural
networks), and ensemble models are considered in the present
study. We compared the abovementioned five categories of
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machine learning models involving 13 algorithms and searched
for the best-fitting model for further assessing craniodentofacial
morphological harmony. Based on machine learning models, our
study aims to improve the prediction performance of
craniodentofacial morphological harmony judgement after
orthodontic treatment and to determine the most significant
factors that influence the craniodentofacial morphological
harmony judgement by orthodontists.

2 MATERIALS AND METHODS

2.1 Quantification of the Subjective
Evaluation From Orthodontic Experts
By random stratified sampling, the dataset of 180 subjects was
selected from 3,706 Chinese malocclusion patients and was
analyzed with two stratified samples. One stratified sample
consisted of 108 subjects from the large sample of 2,383
finished orthodontic cases in six orthodontic treatment centers
around China (including the Peking University School of
Stomatology, the West China College of Stomatology at
Sichuan University, the School of Stomatology at the Fourth
Military Medical University, the Beijing Stomatology Hospital
and School of Stomatology at the Capital Medical University, the
Stomatology Hospital at Nanjing Medical University, and the
Hospital of Stomatology at Wuhan University). The other
comprised 48 subjects from another large sample of 1, 323
finished cases in the Peking University School of Stomatology
and 24 overlapping subjects randomly selected from the former
samples. The posttreatment lateral cephalometric X-ray images of
the former samples were evaluated by a panel of 69 judges, and
the latter samples were evaluated by another panel of 36 judges.
Satisfactory cases were assigned a value of “1” point, acceptable
cases were given “2” points, and unacceptable cases were given
“3” points. For each case, the final score was the average point of
all scores by the judges.

The panel of judges was recommended by the six participating
treatment centers. The inclusion criteria for judges were that
each had

1) an MS or Ph.D. degree in orthodontics or experience as a
research supervisor of orthodontic postgraduates

2) no less than 10 years of clinical experience in orthodontics
3) the academic rank of associate professor or above

The experts who eventually participated in this study ranged in
age from 40 to 60 years. Of the 69 experts on the panel, 38 were
men and 31 were women; of the 36 experts on the panel, 19 were
men and 17 were women.

The overlapping 24 samples were used to verify the
consistency of the judges, which had a good result.
Specifically, the Pearson correlation analysis showed that the
two panels of judges were significantly and positively
correlated (r = 0.905, p < 0.01), and no significant difference
was found (for the paired t test, p＞0.05; for the intraclass
correlation coefficient, ICC = 0.902). Details of the original
data are shown in Supplementary Material S1.

The whole study was performed in accordance with the
Declaration of Helsinki for research involving human subjects
and reviewed and approved by the Ethics and Research
Committee, Peking University School and Hospital of
Stomatology (PKUSSIRB-201947092).

2.2 Cephalometric Analysis
The input data under consideration were derived from the
anatomy of the patients, as shown in Figure 1. They were
based on the 42 cephalometric features, which are shown and
defined in Table 1. The cephalometric features were measured by
three practitioners who were trained at the Peking University
School of Stomatology. The lateral cephalogram landmarks and
cephalometric measurement items were as in Figures 1–3 and
Table 1.

2.3 Statistical Analysis
To evaluate the orthodontic treatment and fit it with the experts’
comprehensive scoring, the following steps were taken (Figure 4):
1) data preprocessing; 2) feature selection and model adaption;
and 3) performance evaluation.

2.3.1 Data Preprocessing
As mentioned previously, the cephalometric features and expert
evaluation scores were utilized as input and output data. The first
step was to make the data sets comparable. Before statistical
analysis, data standardization was conducted through the z-score,

FIGURE 1 | Landmarks of the lateral cephalogram.
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as shown in Eq. 1. Here, X � {xi} was the cephalometric feature
set for all subjects, and μ and σ represented the average value and
standard deviation of the normal population in China (M and X,
1965; X et al., 1986).

Z(X) � ∣∣∣∣(xi − μ)/σ∣∣∣∣, (1)
The data could be split into two subsets as follows: 1) a training

set and 2) a testing set. When there are different settings
(“hyperparameters”) in an estimator, the validation set is
introduced to solve the “leaking”-overfitting issues on the
testing set. However, it is not suitable for our scenarios of the
small sample dataset, only containing 180 samples. Splitting into

three subsets, the available training data will be further reduced
for learning the model. To use the data efficiently, the procedure
named cross validation (CV) is applied in our solution and the
validation set is no longer needed. There are a lot of different ways
to perform a CV. As shown in Figure 5, we have introduced two
kinds of them in our solutions, which are the 10-fold procedure
and the GridSearch CV with a ShuffleSplit function. We take the
10-fold procedure for evaluating per step in addition to each
typical training–testing process because one evaluation on a small
testing set of only 18 samples may not accurately reflect the
performance of the entire model. The 10-fold procedure could
allow for a fairer test as every sample has the same chance to be
and to have been divided into the training set or the testing set,

TABLE 1 | Definitions of the 42 cephalometric features.

No. Cephalometric variables Definition

1 SNA Anteroposterior position of the maxilla to the anterior cranial base (degrees)
2 SNB Anteroposterior position of the mandible to the anterior cranial base (degrees)
3 ANB The angle between Down’s points A and B (degrees)
4 SND The angle between the SN and ND line (degrees)
5 U1/NA The angle between the line through the long axis of the upper central incisor and the NA line (degrees)
6 L1/NB The angle between the line through the long axis of the lower central incisor and NB line (degrees)
7 L1/AP The angle between the line through the long axis of the lower central incisor and the AP line (degrees)
8 U1/L1 The angle between the line through the long axis of the upper and lower central incisors (degrees)
9 U1/SN The angle between the ling through the long axis of the upper central incisor and SN line (degrees)
10 U1/PP The angle between the line through the long axis of the upper central incisor and palatal plane (degrees)
11 L1/MP The angle between the line through the long axis of the lower central incisor and mandibular plane (degrees)
12 SN/OP The angle between the SN line and occlusal plane (degrees)
13 GoGn/SN The angle between the SN and GoGn line (degrees)
14 FH/NP The angle between the Frankfort horizontal plane and NP line (degrees)
15 FH/OP The angle between the Frankfort horizontal plane and occlusal Plane (degrees)
16 MP/FH The angle between the mandibular plane and Frankfort horizontal plane (degrees)
17 NA/PA The angle between the NA and PA line (degrees)
18 Y Sella gnathion to the Frankfort horizontal plane (degrees)
19 AB/NP The angle between the AB and NP line (degrees)
20 U1-NA The perpendicular distance from U1 (incision superius) to the NA line (mm)
21 L1-NB The perpendicular distance from L1 (incision inferius) to the NB line (mm)
22 Pg-NB The perpendicular distance from pogonion to the NB line (mm)
23 SE Distance between Sella and the foot point from the most posterior point of the condyle to the SN line (mm)
24 S-Ns-Sn The angle between the S-Ns and Ns-Sn line (degrees)
25 S-Ns-Bs The angle between the S-Ns and Ns-Bs line (degrees)
26 G-Sn-Pos The angle between the G′-Sn and Sn-Pos line (degrees)
27 Ns-Prn-Pos The angle between the Ns-Prn and Prn-Pos line (degrees)
28 NLA(Cm-Sn-UL) The angle between the Cm-Sn and Sn-UL line (degrees)
29 AsUL-FH The angle between the As-UL line and Frankfort horizontal plane (degrees)
30 BsLL-FH The angle between the Bs-LL line and Frankfort horizontal plane (degrees)
31 AsUL-BsLL The angle between the As-UL and Bs-LL line (degrees)
32 LL-Bs-Pos The angle between the LL-Bs and Bs-Pos line (degrees)
33 Sn-Stoms Distance between the subnasale and stomion superius (mm)
34 Stomi-Mes Distance between the stomion inferius and soft tissue menton (mm)
35 Sn-Prn(FH) The perpendicular distance from the pronasale to the line perpendicular to Frankfort horizontal plane through the

subnasale (mm)
36 Ns-N(FH) The perpendicular distance from nasion to the line perpendicular to the Frankfort horizontal plane through the soft tissue

nasion (mm)
37 Sn-A (FH) The perpendicular distance from subspinale to the line perpendicular to Frankfort horizontal plane through the

subnasale (mm)
38 Bs-B(FH) The perpendicular distance from the supramental to the line perpendicular to Frankfort horizontal plane through the most

posterior point of mentolabial sulcus (mm)
39 ChinThickness Distance between gnathion and the gnathion of soft tissue (mm)
40 UL-EP The perpendicular distance from the upper labral to the E-line (pronaslae to pogonion of soft tissue) (mm)
41 LL-H The perpendicular distance from the lower labral to the H-line (upper labral to pogonion of soft tissue) (mm)
42 LL-EP The perpendicular distance from the lower labral to the E-line (pronasale to pogonion of soft tissue) (mm)
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FIGURE 2 | Cephalometric measurements of hard tissue.

FIGURE 3 | Cephalometric measurements of soft tissue.

FIGURE 4 | Diagram of the process of analyzing the quantitative evaluation, which was performed by utilizing the cephalometric features as input data and the
expert evaluation scores as output data.
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and the final evaluation takes the statistical indicators on all
samples at the testing set. During the GridSearch CV process, the
training samples from the 10-Fold procedure are first randomly
shuffled, then split into a pair of training and testing sets, and
lastly, sent to select hyperparameters, train the model, and
evaluate the performance of the trained model. In the
ShuffleSplit function, we set it five times for the shuffle
division process and take 20% of the data as the testing set.

2.3.2 Feature Selection and Model Adaption
Feature selection usually has two purposes and utilizes feature
selection techniques. One technique is to reduce the clutter of
original features, which includes highly correlated elements or
irrelevant features. The other technique is to reduce the difficulty
of analysis and increase prediction accuracy. This part of the work
relies on feature engineering, which is based on the ranking of
variable importance. The linear regression models often have the
disadvantage of collinearity, which greatly affects error levels. In
our solution, the initial feature screening was conducted to
eliminate collinearity. The variable selection method was based
on the correlation analysis (Ruz and Araya-Díaz, 2018) and was
performed as follows:

The correlation analysis was performed on the 42 factors as
well as the factors and the subjective outcomes (experts scoring
results). One factor was retained out of two or more factors with
Pearson correlation coefficients of 0.7 and above, with which the
highest correlation with the subjective outcome was selected as
the retention factor from these factors with collinearity.

Then, ten factors (SND, U1/NA, NA/PA, MP/FH, U1/PP, L1/
MP, AB/NP, FH/OP, S-Ns-Sn, and LL-H) were removed, leaving
32 factors for the subsequent analysis (Figure 6).

For the model adaption procedure, the initial model screening
was conducted to find relatively suitable algorithms from the
common and widely used machine learning methods, which are
listed in Table 2. The 13 algorithms in Table 2 comprise five

categories of machine learning models including linear models,
SVMs, decision trees, ANNs (artificial neural networks), and
ensemble models, which are introduced in detail in
Supplementary Material S2.

The mean absolute error (MAE) and root mean square error
(RMSE) could be used to assess the fitting performance of the
models, as shown in Eqs 2, 3. Here,X � {xi} is the cephalometric
feature set of all subjects. n stands for the total number ofX, which
is 180 in our case. {yi} is the set of ground-truth scores
corresponding to each subject. f(xi) is the analytical approach
that takes the cephalometric features as inputs and the prediction
values as outputs.

MAE(X,f) � 1
n
∑n

i�1
∣∣∣∣f(xi) − yi

∣∣∣∣, (2)

RMSE(X, f) � ����������������
1
n
∑n

i�1[f(xi) − yi]2
√

, (3)

2.3.3 Performance Evaluation
Based on the performance in the data processing (seen in
Figure 7), there are four subsequent approaches: AdaBoost,
ExtraTrees, XGBoost, and LSR were selected to compare
subsets of cephalometric features. Here, the reason for
including LSR with a mediocre performance is that LSR is
utilized as a conventional approach in most medical studies.
Therefore, we utilized LSR as a baseline method. We choose the
other three approaches for further comparisons because they
have yielded stable and relatively small metric values.

Then, the MCCV method was applied again, splitting the
samples into the training set and testing set 10 times at random.
The 32 factors were sequentially incorporated into the models in
terms of their ranking list according to the relevance to the
experts’ evaluation scores. The mean absolute error (MAE), root
mean square error (RMSE), and Pearson correlation coefficient

FIGURE 5 | The flowchart of the cross-validation workflow from the scratch to evaluate the performance of each model after feature selection.
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were produced to assess the final fitting performance of the
models.

3 RESULTS

In this section, we evaluate the performance of four algorithms,
i.e., AdaBoost, ExtraTrees, XGBoost, and LSR, by using the
MCCV method. In this case, K-fold (K = 10) cross validation
was applied. In the feature selection portion, we found that
choosing a subset of no more than 32 features was the best
option. Based on the importance rank order of these features, we
gradually select feature subsets with a feature number from 1 to
32. Therefore, for each feature subset, we applied the MCCV

method and took the average values of the model computing
outcomes as the final results of the metrics. We will show the
results from three aspects, including the model fitting
performance, predicted performance, and model interpretability.

3.1 Model Fitting Performance
The line chart (Figure 8) could show the trend in the model
fitting performance when the features (from 1 to 32) were
included in turn. Such a chart could help us screen for the
suitable model. In particular, when the line chart jiggles
dramatically, it often means that the method is severely over-
fitted. When this phenomenon occurs, the method needs to be
excluded, even though it may show ideal numerical results at
some nodes.

FIGURE 6 | Pearson correlation coefficients with 42 factors.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8628477

Wang et al. Machine Learning Evaluating Malocclusion Treatment

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Figures 8A1–C1 show the total sample. As the number of
features entering the model increased, the values of MAE and
RMSE of the XGBoost regression model (the yellow line) and
ExtraTrees regression model (the blue line) were less than 0.2,
and the Pearson correlation coefficient was also closer to 1, which
indicated a better fitting performance compared to the other two
methods.

Figures 8A2–C2 show the testing set, which can more
sufficiently explain the performance problem. The overall
trend of the line chart showed that the MAE and RMSE
values decreased at the beginning as the number of features
entering the model increased and then increased as the
number of factors increased after reaching the trough. In
particular, the XGBoost and ExtraTrees regression models (the

yellow and blue lines) appeared more often at the troughs
compared to the other two models.

However, the result of the ExtraTresss regression (the blue
line) yielded a more pronounced curve jitter both in the total
sample and testing set model, indicating a possible severe risk of
overfitting. Therefore, the ExtraTrees regression model (the blue
line) was not applicable to this study, and we ultimately
concluded that the XGBoost model had better fitting
performance.

3.2 Predicted Performance
To evaluate the predictive performance, the exact number of
features should be clarified, when the best-predicted model is
performed. Values of the MAE, RMSE, and Pearson correlation

TABLE 2 | The list of 13 methods from Scikit-learn.

Name Description

sklearn.linear_model. LinearRegressiona It estimates the coefficients by applying Ordinary Least Squares
sklearn.linear_model.Lassoa It can estimate sparse coefficients, which addresses the issue of the least-squares penalty minimization with the ℓ1 -norm

of the coefficient vector
sklearn.linear_model.Ridgea It introduces a penalty with ℓ2-norm on the size of the coefficients to help solve the problem of collinearity
sklearn.tree. DecisionTreeRegressora It is a non-parametric supervised learning method to make predictions for a target variable by learning the decision rules

inferred from the input features
sklearn. ensemble. GradientBoostingRegressora It supports a series of different loss functions. Here, we take the default loss function for regression, i.e., least squares
sklearn.ensemble. AdaBoostRegressora It assembles a sequence of weak learners with a weighted majority vote by taking the repeated boosting iteration
sklearn. ensemble. BaggingRegressora It introduces randomization into the construction procedure of an estimator and then makes an ensemble by splitting and

aggregating individual predictions of this estimator on random subsets of the original training set
sklearn.ensemble. RandomForestRegressora It aims at decreasing the variance of the forest estimator by using bootstrap samples from the training set and random

subsets of candidate features for node splitting
sklearn.ensemble. ExtraTreesRegressora It is similar to the random forests with node splitting. However, it randomly generates thresholds for each candidate feature

and picks the best of these thresholds as the splitting rule
sklearn.neural_network. MLPRegressora It implements a multilayer perceptron (MLP) with no activation function in the output layer. Its output is a set of continuous

values, and it takes the square error as the loss function
sklearn.svm.LinearSVRa It is only suitable for the linear kernel when solving regression problems
sklearn.svm.SVRa There are three kinds of kernels in this algorithm, i.e., linear, polynomial, and RBF kernels. Here, we take the RBF kernel
xgboost.XGBRegressorb It implements the Scikit-Learn Wrapper interface for XGBoost regression

ahttps://scikit-learn.org/stable/supervised_learning.html.
bhttps://xgboost.readthedocs.io/en/latest/.

FIGURE 7 | Results of the initial model screening: the MAE of AdaBoost, ExtraTrees, and XGBoost had the lowest values within the smallest standard deviations,
compared with that of the other models.
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coefficient from the testing set were used for comparison among
XGBoost regression, ExtraTress regression, AdaBoost
regression, and linear regression. In Figure 8, as the method
of XGBoost regression was selected in Section 3.1, three nodes
(when 9, 15, and 17 features were included, respectively) were
then picked for further comparison, as the values at the three
nodes were near the peak or trough and were relatively close to
each other.

Table 3 shows the results of the values of the performance
indicators from those four methods. When nine features were

included, the performance of the XGBoost regression model was
MAE = 0.267, RMSE = 0.341, and Pearson correlation coefficient
= 0.683; when 17 features were included, the performance of the
XGBoost regression model was MAE = 0.265, RMSE = 0.343, and
Pearson correlation coefficient = 0.672. Although the latter MAE
value was slightly smaller than the former one, the former RMSE
and Pearson correlation coefficient values were both better than
those of the latter. Therefore, the XGBoost regression model
exhibited the best predictive performance when nine features
were included.

FIGURE 8 | Results from the total sample by using XGBoost regression, ExtraTrees regression, AdaBoost regression, and linear regression: (A1) mean absolute
error (MAE); (B1) root mean square error (RMSE); and (C1) Pearson correlation coefficient. The results from the testing set sample by using XGBoost regression,
ExtraTrees regression, AdaBoost regression, and linear regression: (A2)mean absolute error (MAE); (B2) root mean square error (RMSE); and (C2) Pearson correlation
coefficient.
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3.3 Model Interpretability
The results of the testing set were best predicted by the XGBoost
regression method when nine features were entered into the
model, including L1/NB, ANB, LL-EP, SN/OP, SNB, U1/SN,
L1-NBmm, Ns-Prn-Pos, and U1/L1, which reflected the lower
incisors, the anterior–posterior relationship between the upper
and lower jaws, the prominence of the lower lip, the steepness of
the occlusal plane, the anterior–posterior position of the lower
jaw relative to the cranial base, the prominence of the lower
incisors, the prominence of the nose, and the relative labial
inclination of the upper and lower incisors (Figure 9).

4 DISCUSSION

The recent advances in machine learning and a large amount of
available data have laid the foundations to apply the machine

learning methodology to various orthodontic aspects, including
automated landmark detection on lateral cephalograms and
photography images, facial attractiveness, and skeletal
classification, as well as determining the degree of cervical
vertebra maturation, providing orthodontic tooth extraction
decisions, and predicting the need for orthodontic treatment
or orthognathic surgery. Based on current studies, the most
promising applications have been focused on predicting the
need for treatment and decision making for tooth extractions
before orthodontic treatment (Mohammad-Rahimi et al., 2021).
However, the application to evaluate the craniodentofacial
morphological harmony after orthodontic treatment attracts
rare attention. Orthodontic treatment achieves the goal of
improving the function, balance, and aesthetics of the hard
and soft tissue structure by moving the teeth. Orthodontists
have been working on methods to assess the results of
orthodontic treatment and to be able to objectively assess the

TABLE 3 | Machine learning model performance in the testing set.

Number of features Performance indicator XGBoost
regression

ExtraTrees
regression

AdaBoost
regression

Linear regression

Mean SD Mean SD Mean SD Mean SD

9 MAE 0.267 0.077 0.269 0.061 0.279 0.071 0.296 0.071
RMSE 0.341 0.086 0.334 0.074 0.345 0.078 0.355 0.075
Correlation coefficient 0.683 0.163 0.694 0.133 0.677 0.153 0.641 0.161

15 MAE 0.267 0.077 0.272 0.077 0.291 0.071 0.301 0.061
RMSE 0.342 0.094 0.351 0.084 0.361 0.078 0.365 0.071
Correlation coefficient 0.671 0.186 0.656 0.155 0.642 0.148 0.623 0.165

17 MAE 0.265 0.071 0.281 0.081 0.281 0.069 0.305 0.062
RMSE 0.343 0.092 0.352 0.099 0.347 0.079 0.369 0.073
Correlation coefficient 0.672 0.168 0.654 0.200 0.682 0.160 0.617 0.164

FIGURE 9 | Results of the Pearson correlation coefficient from the testing set when nine factors were included by using the XGBoost regression model.
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merits of treatment results, both on a case-by-case basis and a
comparison between cases. The most widely used methods of
outcome evaluation include the PAR (Peer Evaluation Rating)
index, the ABO-OGS (American Board of Orthodontics-Objective
Grading System) evaluation system, and the ICON (Index of
Complexity, Outcome and Need), each of which has its own
characteristics and should be used in the evaluation of
orthodontic clinical cases within a certain field. However, these
methods are based on research samples and practitioners from
Europe and the United States, the developed statistical methods
are limited, and no orthodontic outcome evaluation system has been
established for Chinese patients. The present study proposed to apply
a machine learning approach to evaluate the posttreatment
cephalometric diagrams of patients for Chinese orthodontic
specialists, presenting a methodological innovation and an analysis
of the factors incorporated into the evaluation. Themodel also aimed
to improve the prediction performance for facial profile congruence
judgment after orthodontic treatment and to find themost important
characteristics when evaluating cephalometric morphological
harmony by orthodontists. The model learns from past routine
measurements, either including or excluding the factors concluded
from the 2D images of cephalometric diagrams and/or the 3D images
of plaster casts of dentitions which are used to compute the
orthodontic index. The proposed XGBoost regression model was
shown to be effective and precise in handling this task by performing
better than the other machine learning models and traditional
statistical methods that predict the scores of experts. Compared
with the other approaches reported in the literature (Yu et al.,
2014, 2016), the major advantages of the proposed XGBoost
regression model from the present study involve the ability to deal
with lower and smaller transversal data sample size.

This study identified 9 out of 42 cephalometric factors
(including L1/NB, ANB, LL-EP, SN/OP, SNB, U1/SN, L1-NB,
Ns-Prn-Pos, and U1/L1) that significantly influenced the
orthodontist judgments when evaluating posttreatment
satisfaction and facial morphological harmony. The factors
could then be categorized into the following parts: the tooth
position, tooth alignment, jaw position, and soft tissue
morphology. These four parts cannot be separated regarding
the facial morphological harmony evaluation and are
structurally interlinked and influenced by each other.

For the first part, the lower incisor inclination (L1/NB), lower
incisor prominence (L1-NB), upper incisor inclination (U1/SN),
and relative inclination of the upper and lower incisors (U1/L1)
reflect the tooth position. Some researchers (Kambara et al., 2016)
investigated how the position of mandibular incisors affected
facial profile aesthetics and concluded that the position of
mandibular incisors for Japanese patients should be within a
Holdaway ratio of 2–3 (distance from L1 to NB divided by the
distance from Pog to NB) when the distance from L1 to the NB
line was considered. Uesato G et al. (Uesato et al., 1978) stated
that 5 mm was an ideal figure for the distance from L1 to the NB
line when Steiner analysis was applied to Japanese individuals.
For the second part, the occlusal plane steepness (the angle
between SN and the occlusal plane, SN/OP) reflected the
vertical alignment of the teeth and, to some extent, the vertical
facial type. The vertical alignment of the teeth corresponded to

the occlusion of the teeth, which was determined to some extent
by the vertical orientation of the facial type and the direction of
the occlusal muscles. Anteroposterior and vertical facial type
variations influenced the aesthetic preference of the
anteroposterior lip positions and further influenced the
judgement of facial harmony after orthodontic treatment. For
the third part, the anteroposterior positions of the maxilla to the
mandible (ANB) and the mandible to the cranial base (SNB)
reflected the jaw position. For orthodontists, angle classification is
the most widely used method of determining the sagittal occlusal
relationship of the upper and lower teeth. Angle classification
reflects to some extent skeletal malocclusion, which is the upper
and lower jaw position relative to the skull. Patients with Angle
Class I and Skeletal Class I (ANB = 2.7 ± 2°) usually have a normal
jaw position, while patients with Angle Class II and Skeletal Class
II often present with maxillary protrusion and mandibular
retrusion, and patients with Angle Class III and Skeletal Class
III present with maxillary retrusion and mandibular protrusion.
However, with the different sagittal relationships of the upper and
lower jaws, experts may develop different plans for orthodontic
treatment regardless of the type of angle classification. Moreover,
patients with different jaw positions may experience different
difficulties and have different orthodontic treatment expectations
(Turley, 2015). For the fourth part, nasal prominence/the total
facial convexity angle (Ns-Prn-Pos) and lower lip prominence
(lower lip to E-line, LL-EP) reflected the soft tissue morphology,
which appeared to influence the aesthetics and harmony of the
facial profile after orthodontic treatment. These are the features
that represent the anteroposterior position of the lower lip and
the amount of noise that influences the profile/facial convexity
(Fortes et al., 2014). Some researchers (Perović, 2017) pointed out
that the significant differences in profiles of people with class II
division two compared to class I were the position of the lower
and upper lip in relation to the S-line (which is another reference
plane with a similar function as the E-line). Others (Joshi et al.,
2015) found that the sagittal lip positions were associated with the
skeletal malocclusion pattern.

The present study revealed the nine significant cephalometric
features integrated into the abovementioned four parts which not
only determine the most important characteristics when experts
comprehensively evaluate various landmarks and components on
cephalometric films but also provide evidence about the relationship
among these characteristics. When assessing cases, experts may
focus more on the correlation of these important factors, rather
than just a standard value for a particular measurement.

Overall, the significance of our study was reflected in three
main aspects: 1) first, it was the attempt to apply machine
learning methods to the expert evaluation of craniodentofacial
morphological harmony after orthodontic treatment, which was
methodologically different from traditional statistical methods,
and the results showed that the XGBoost regression model
improved the fitting and predicted performance of the model
over linear regression; 2) second, based on the model, we have
taken the orthodontic clinical perspective to analyze the included
features, which validated the content of the features of clinical
interest from the machine learning perspective of our study; and
3) third, based on the first two aspects, this study provided ideas
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for future exploration of similar machine learning algorithms
using small samples from orthodontic clinics.

Computers and technology continue to allow us to study,
predict, and produce aesthetic results that were previously
thought to be unattainable. Digitalized clinical databases stored
in the form of photographs, lateral cephalometric films, CBCT,
3D models, and the associated software programs have improved
our ability to analyze hard and soft tissue data. In future work,
further studies need to focus on exploring new solutions or
enhancing the ability to utilize automation.

5 CONCLUSION

Within the limitation of the present study, the practical
application of the XGBoost regression model performed a
better predictive ability than that of the other models
regarding the cephalometric morphological harmony
evaluation by experts after orthodontic treatment. The present
methodology also provided guidance for the application of
machine learning models to medical problems characterized
by limited datasets sizes. Moreover, the teeth position, teeth
alignment, jaw position, and soft tissue morphology were
demonstrated to be the most significant factors that influenced
the craniodentofacial morphological harmony judgment by
orthodontists.
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