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Abstract: Here, we developed a new synthetic method for the production of a new class of polymeric
inorganic hybrid biomaterial that has potential for dental implant applications and, in general, other
orthopedic applications owing to its excellent mechanical properties and biomechanical compatibility.
The new hybrid biomaterial is a composite consisting of polyetherketoneketone (PEKK) and hydrox-
yapatite (HA). This hybrid material boasts several unique features, including its high HA loading
(up to 50 wt%), which is close to that of natural human bone; the homogeneous HA distribution
in the PEKK matrix without phase separation; and the fact that the addition of HA has no effect
on the molecular weight of PEKK. Nanoindentation analysis was used to investigate the mechani-
cal properties of the composite, and its nano/microstructure variations were investigated through
a structural model developed here. Through nanoindentation technology, the newly developed
PEKK/HA hybrid biomaterial has an indentation modulus of 12.1 ± 2.5 GPa and a hardness of
0.42 ± 0.09 GPa, which are comparable with those of human bone. Overall, the new PEKK/HA
biomaterial exhibits excellent biomechanical compatibility and shows great promise for application
to dental and orthopedic devices.

Keywords: polyetherketoneketone; hydroxyapatite; composite; hybrid; dental; orthopedic; orthodontic;
high performance; mechanical compatibility

1. Introduction

Polyetherketoneketone (PEKK) is a new kind of special engineering plastic with
properties that make it highly suitable for medical applications [1,2]. Accordingly, it has
been approved by the Food and Drug Administration for oro-maxillofacial and spinal
surgery, and it is widely used in the medical field.

It is estimated by the World Health Organization that ~60–90% children and approxi-
mately 100% of adults suffer from caries disease globally. Furthermore, ~30% of people
aged between 65 and 74 have no natural teeth, with the situation being worse in poor areas.
Tooth loss caused by severe periodontal disease and trauma has become the main cause of
oral-function decline [3,4].
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The use of artificial implants is the most important method of tooth repair. Such
implants can be classified as dental implants, dental bases, and dental crowns [5]. A dental
implant is surgically implanted into the upper or lower alveolar bone around the missing
tooth to serve as the root. Accordingly, it represents the key part of an artificial tooth
as it must bear forces, fix the tooth, and combine with the bone. This makes it the most
important factor influencing the healing and regeneration of alveolar bone after surgery.

A wide range of materials have been tested and used in dentistry [6], such as metals,
alloys, ceramics, polymers, biological glass, and carbons. At present, the most widely used
implant materials clinically are titanium and its alloys (Ti-6Al-4V) owing to their reasonably
good biocompatibility and biofunctionality among readily available materials [7]. However,
they still suffer certain drawbacks; for example, their elastic modulus are ~110 GPa, which
is far higher than that of jaw bone (10–40 GPa) [8]. Accordingly, the stress concentration at
the surface between the dental implant and the bone can lead to implant fracture and bone
resorption around the implant. A study [6] showed that a significant increase in titanium
ion concentration and fluid accumulation can occur adjacent to an implant site, which may
inhibited osteoblast production and promote osteoclast synthesis. Although this research
has not yet been clarified, this phenomenon is still worrying. Furthermore, products made
with titanium and its alloys can cause complications such as titanium allergy, and the poor
light transmittance of metal implants can have a negative esthetic effect [4].

Ceramics are another kind of dental implant material, and they have been studied
and utilized in this field for three or four decades. Zirconium oxide [9–13] is the most
investigated ceramic dental material, with much of the work being performed in the labo-
ratory rather than in clinical applications. This is because of its intrinsic weaknesses such
as brittleness and poor impact resistance, which mainly results from its low-temperature
degradation upon aging [14–16]. To address these problems, some researchers have mixed
iridium oxide with zirconium oxide, but these composites exhibited unsuitable in vivo
properties [17,18]. As with those of metals and alloys, the elastic modulus of zirconium
oxide is high (210 GPa), which causes imbalances in stress distribution and thus stress
concentration [19,20].

Polyetheretherketone (PEEK) is a linear aromatic polymer compound that is widely
used in the aerospace and automotive industries as well as precision instrument manu-
facturing owing to its excellent mechanical properties and chemical stability. In addition,
PEEK is becoming increasingly used in orthopedics and dentistry owing to its biosafety,
elastic modulus, and excellent surface properties [21,22]. However, compared with PEEK,
PEKK has better surface chemical modification potential, is easier to sulfonate, and has
better bone apatite deposition properties. As well as these improved mechanical and
chemical properties, PEKK exhibits good bone fusion and antimicrobial properties [23,24].

Research into dental implants is multidiscipline, meaning that the materials used
are often required to meet biological and mechanical requirements simultaneously. As
a result, new biocomposite dental materials are attracting increasing research attention
in the field of dental implants [25,26]. Owing to the potential applications of organic
nanostructured inorganic hybrids as bioactive high performance medical implants, their
design and development is one of the most active areas of research worldwide. The most
common method used to make organic and inorganic composites is through mixing [27].
However, a drawback of this mixing technology is that it cannot produce composites
with high inorganic loadings at the required uniformity. This is particularly true when
nanoparticles or nanostructured inorganic fillers are to be dispersed in an organic polymer
matrix [27]. This is because adding inorganic materials to an organic matrix is challenging
due to their general chemical and physically incompatibility. Therefore, mechanical mixing
processes cannot produce designed structures with nanoscale uniformities. Currently, there
are no established methods for the controlled introduction of nanostructured inorganic
fillers into organic polymer matrixes, so it is difficult to achieve truly nanostructured
composites with high inorganic loading. This difficulty is more pronounced when scale-up
and reproducibility must be considered at the manufacturing stage.
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PEKK is a type of high-performance semi-crystalline thermoplastic polymer, with
high strength, relatively good ductility, heat resistance, corrosion resistance, and many
other great properties. Accordingly, it can be used to substitute metals and ceramics as
dental implant materials [1,28,29]. Furthermore, its utility in the fields of bone implants,
trauma-treatment materials, and skull reconstruction has been widely reported [1,4]. Our
area of research interest is the use of PEKK to develop polymeric inorganic hybrids with
elastic moduli and densities close to those of human bone, and to make PEKK bioactive
and suitable for cell attachment.

There have been several studies on the mechanical properties of hydroxyapatite (HA)-
whisker-reinforced PEKK scaffolds. However, their mechanical properties need to be
improved if they are to be used in dental implants [30]. Synthetic methods rather than
the mechanical mixing of an organic and inorganic material of opposite characteristics are
required for the precise engineering of inorganic–organic hybrid biomaterials. Accordingly,
the current work details a methodology to synthesize a polymeric–ceramic hybrid via
a bottom-up approach, i.e., starting from a monomer and growing polymeric molecules
onto nanostructured ceramic particles. In this work, PEKK as well as HA is used to
synthesize such composites. The HA content of human bone is ~50–70 wt%, so the core
task of the present work was to prepare hybrids with HA contents in that range. PEKK is
synthesized at room temperature and normal pressure via a Friedel–Crafts reaction [31–33].
The unique aspect of this new synthetic strategy is that inorganic particles are employed
as starting materials and PEKK are grown from monomers onto these inorganic filler
particles. Specifically, HA nanoparticles are used as starting materials to make PEEK-
HA hybrid composites, providing materials with very high HA loadings that also have
highly uniform nanoscale morphological structures. We assume that the HA and PEKK
composites synthesized in situ can improve the mechanical properties (such as indentation
modulus) of the materials, so that they can be used in dental implants, as well as for other
orthopedic applications.

2. Materials and Methods
2.1. Materials

Commercially available HA (rod-shaped particles; 30 nm × 100 nm) was obtained
from Shanghai Hualan Chemical Technology Co., Ltd. (Shanghai, China) Diphenyl ether
(>99.0%), aluminum chloride (AR, 99%), terephthaloyl dichloride (99%), and N-methyl-2-
pyrrolidinone (99.5%) were obtained from Shanghai Aladdin Reagent Co., Ltd. (Shanghai,
China) 1,2-Dichloroethane (AR) and anhydrous methanol (AR) were obtained from Shang-
hai Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Synthesis of PEKK/HA Composites

1,2-Dichloroethane (50 mL) and AlCl3 (5 g) were stirred in a three-necked flask for
30 min under nitrogen. HA (1.6 g) was then introduced to the reaction system and, after
30 min, a mixed solution of N-methylpyrrolidinone (1.25 mL) and 1,2-dichloroethane (5 mL)
was added slowly, keeping the temperature of the reaction system at −15 ◦C. After 30 min,
1.5 mL diphenyl ether and 2.03 g terephthaloyl dichloride were added to the system, again
maintaining the temperature at −15 ◦C. After 1 h, the cooling apparatus was switched off
and the reaction was allowed to proceed overnight at room temperature for 20 h. Then,
400 µL diphenyl ether was added and the reaction was stirred for 120 min to terminate
the polymers, and 100 mL anhydrous methanol was added and the reaction was stirred
for another 120 min to stop the reaction. After washing with icy water and anhydrous
methanol and separating the product from the washing solution by filtering, the product
was dried in a drying oven at 80 ◦C for over 24 h.
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2.3. Characterization
2.3.1. Back Reflection Infrared Spectroscopy

The back reflection mode of the infrared spectrometer (Nicolet iN10; MA, USA) was
used to test the samples. When testing, a small amount of HA, PEKK or PEKK/HA
powders were spread on the sample table for testing. The original data of the test were
drawn and analyzed with QRIGIN software.

2.3.2. X-ray Photoelectron Spectroscopy

In this experiment, X-ray Photoelectron Spectroscopy (PHI 5000 VersaProbe II; Kratos;
Japan) instrument is used to test the carbon and calcium elements in PEKK/HA, and the
tested PEKK/HA samples were in powder form. Advantage software was used for XPS
data analysis.

2.3.3. Scanning Electron Microscopy and Transmission Electron Microscopy

Scanning electron microscopy (Quanta FEG 250; Hillsboro, OR, USA) along with
transmission electron microscopy (Tecnai G2 F20 S-TWIN; PA, USA) were used to observe
whether the HA was wrapped by the PEKK. EDS patterns of scanning electron microscopy
(Quanta FEG 250; Hillsboro, OR, USA) was used to obtain information on the distribution
of carbon, calcium, and phosphorus in each sample. The tested data graphs were directly
used for drawing.

To prepare SEM samples, PEKK or PEKK/HA composite powders were pressed into
bulk samples (1cm × 1 cm) by thermo-compression molding. Then, the bulk samples were
pasted onto a conductive adhesive, and the surface of the samples were sprayed with gold
(20 mA for 2 min).

To prepare TEM samples, after the reaction was stopped with anhydrous methanol,
a drop of the reaction solution was pipetted to a glass bottle and diluted to 15 mL with anhy-
drous methanol. After ultrasonic mixing for 10 min, the solution was dropped onto a copper
mesh using a capillary burette three times and then dried in an oven at 100 ◦C for 12 h.

To prepare EDS samples, pure PEKK and PEKK/HA composite powders were pressed
into bulk samples (1 cm × 1 cm) by thermo-compression molding. Then, the bulk pure
PEKK and PEKK/HA composite samples were put on conductive adhesive and adhered to
the sample table, then the surface of the samples were sprayed with gold (20 mA for 2 min).

2.3.4. Molecular Weight

In the research, HA was added to the reaction system to make the composites, so it
was important to demonstrate that the HA does not affect the synthesis of PEKK in terms
of its molecular weight. According to the Mark–Houwink formula (shown as Equation (1)
below), the molecular weight of a polymer is associated with its viscosity. Because of the
insolubility of HA in concentrated sulfuric acid, the HA was removed from the composites
using hydrochloric acid and then the samples were dissolved in concentrated sulfuric acid
and the viscosity of the solutions was determined using an Ubbelohde viscometer. The
molecular weight of PEKK test samples are in powder state (η is viscosity of liquid; K is
Huggins constant; β is Kramer constant; M is viscosity-average molecular weight; C is
concentration of liquid; ηsp is the specific viscosity; ηr is relative viscosity; α is a parameter
related to the morphology of polymer in solution).

[η] = KMα (1)

ηsp

C
= [η] + K[η]2C (2)

ηsp

C
= [η] +β[η]2C (3)

ηsp and lnηr/C were plotted against C according to Equations (2) and (3), where the
intercept is the intrinsic viscosity, and this can be used to calculate the viscosity average
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molecular weight of PEKK according to Equation (1). The original data obtained through
the test were drawn and analyzed with ORIGIN software.

2.3.5. Mechanical Analysis

The mechanical properties of the PEKK/HA composite are of great importance, and
were measured by nanoindentation. After thermo-compression molding, a cylinder with
a diameter of 13.0 mm and a height of 5.0 mm was made, and the sample was polished with
sandpaper and then analyzed using an MTS Agilent G200 nanoindenter (Agilent G200;
GA, USA) with the parameters: test probe, Berkovich diamond tip, tip radius 20 nm; total
indenter travel, 1.5 mm; maximum indentation depth, 500 µm; maximum load (standard),
500 mN; maximum load with high load option, 10 N; load resolution, 50 nN; load frame
stiffness, ≈5 × 106 N/m; useable sample area, 100 × 100 mm; maximum indentation depth,
>15 µm; typical resonance frequency, 180 Hz; maximum load, 10 mN; load resolution, 1 nN;
surface approach velocity, 10 nm/s; depth limit, 3000 nm; strain rate target, 0.05 per second;
harmonic displacement target, 2; and Poisson’s ratio, 0.25. The original data obtained
through the test were drawn and analyzed with ORIGIN software.

3. Results
3.1. Back Reflection Infrared Spectroscopy

Back reflection infrared (IR) spectroscopy was used to characterize the PEKK and
the PEKK/HA composite as well as the HA, which is commercially available. The test
samples of HA, PEKK, or PEKK/HA composite are in powder state. The spectra are shown
in Figure 1.
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The characteristic peak at ~1645.0 cm−1 is due to the carbonyl groups connecting
two benzene rings, while the peaks around 1199.6, 1492.0, and 1589.7 cm−1 are due to the
ether bond between two benzene rings. All these peaks can be observed for the PEKK/HA
composite, indicating that it contains PEKK.

The peak at approximately 3569 cm−1 in the spectrum of HA is due to its hydroxyl
group, whereas the peaks at 960, 1030, and 1100 cm−1 are the absorption peaks of the phos-
phate group in HA. All these peaks are observed in the PEKK/HA composite, indicating
that it contains HA.

3.2. X-ray Photoelectron Spectroscopy

To determine the content of HA in the PEKK/HA composite, X-ray photoelectron
spectroscopy was used to obtain the ratios of carbon and calcium in the composite, allowing
indirect calculation of the HA content, and the tested PEKK/HA samples are in powder
form. (Figure 2)
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Figure 2. X-ray photoelectron spectroscopy results for the PEKK/HA composite. (A): Carbon from
PEKK; (B): calcium from HA [34].

The measured carbon/calcium ratio is ~7.027:1, which, when converted into a mass
ratio, is ~1.015:1. Thus, the HA content of the composite is 50 wt%, i.e., that of human bone.

3.3. SEM, TEM and EDS Mapping

Figure 3 shows the SEM images of PEKK and PEKK/HA bulk samples (1 × 1 cm).
Unlike pristine PEKK, PEKK/HA shows clear granular structures on its surface.

Figure 4 shows TEM images of PEKK, HA, and PEKK/HA powder samples. Com-
pared to organic matter (polymers), inorganic substances are much darker due to their
crystallization. As a result, the organics can be distinguished from the minerals using TEM.

Figure 5 shows EDS elemental mapping results of PEKK and PEKK/HA bulk samples
(1 × 1 cm).
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(C2) phosphorus in PEKK/HA. All images are 10 µm × 10 µm.

Figure 3A,B shows pure PEKK, while C and D show the PEKK/HA composite. It can
be seen from the surface topography in B and D that HA is distributed in PEKK in granular
form. Figure 4A,B shows pure PEKK, C-D shows pure HA rod-shaped particles of around
30 nm × 100 nm, while E-F shows the PEKK/HA composite, demonstrating that HA is
wrapped by PEKK. In Figure 5, the red dots (A) represent carbon, which is from PEKK,
while the purple (B) and yellow (C) dots represent calcium and phosphorus, which is found
in HA. Hence, the PEKK/HA composite contains both components in a highly distributed
and uniform arrangement.

3.4. Effect of HA on the Molecular Weight of PEKK

In the present reaction system, HA particles are used as the starting material to
synthesize the PEKK/HA hybrid composite, so the effect of HA on the molecular weight of
the PEKK had to be established. The molecular weight of PEKK test samples are in powder
state. In Figure 6, the first plot shows the molecular weight of PEKK without HA, and the
second is for the composite system after removing HA by HCl.
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According to the Mark–Houwink formula, the viscosity average molecular weight of
the PEKK sample is ~280,000, whereas that of the PEKK/HA is ~330,000, which represents
a similar range of molecular weight.

3.5. Mechanical Properties of the Composite

Figure 7 shows the results of indentation modulus and hardness analysis of the
composite, which is a cylinder with a diameter of 13.0 mm and a height of 5.0 mm. This
test method uses nanoindentation. With the increasing number of dental implants and
the requirements of other orthopedic applications, biocompatibility is no longer the only
consideration, and increasing attention is being paid to biomechanical compatibility, which
is vital for improved performance and service lifetime.
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and polishing.
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The data in Figure 5 and Table 1 show that the average indentation modulus and
hardness for the PEKK/HA composite are ~12.5 ± 2.5 GPa and 0.42 ± 0.09 GPa respectively,
and the testing method is nanoindentation. The modulus and harness displacement profile
varies from sample to sample due to nanostructural variation, which will be discussed below.

Table 1. Average indentation modulus and hardness values for five different points (A–E) on the
same sample.

Test Average Indentation Modulus
(GPa)

Average Hardness
(GPa)

A 11.5 0.42
B 14.5 0.5
C 13.8 0.51
D 12.4 0.4
E 8.1 0.29

Mean 12.1 0.42
Std. Dev. 2.5 0.09
% COV 20.61 20.99

4. Discussion

The aim of the present work was to synthesize a new class of polymeric hybrid compos-
ite consisting of PEKK and HA through a synthetic pathway rather than mechanical mixing.
It was hoped that a modulus and hardness close to those of human bone (14.8–22.8 [36]
and ~0.47 GPa [8], respectively) could be achieved. The nano indentation test showed that
the indentation modulus of PEKK was increased from 7 GPa [36] to 12.5 ± 2.5 GPa, and the
nano hardness was increased from 0.2 GPa [36] to 0.42 ± 0.09 GPa with the addition of HA.
The mechanical properties of HA/PEKK were close to those of human bones. The results
confirm that these goals were largely achieved with the first use of this new technology.
This is because the new synthetic pathway allows very high loadings of nanostructured
HA of up to 50 wt% (that of natural bone is between 50 and 70 wt%) in a highly uniform
fashion at both the micro- and macroscale. Compared with the metal materials used in the
current market as dental implants, the mechanical properties of PEKK/HA composites
not only meet the requirements, but also avoid the disadvantages of metal materials [37].
Hence, the PEKK/HA composites possess mechanical properties more similar to human
bones, which may indicate that it has better osseointegration ability.

Some studies showed that various clinically reinforced PEEK composites have been
developed, such as carbon fiber-reinforced polyetheretherketone (CFR-PEEK) and glass
fiber-reinforced polyetheretherketone (GFR-PEEK). The elastic modulus of CFR-PEEK can
be as high as 18 GPa, and that of GFR-PEEK can be as high as 12 GPa, both of which are
relatively close to the elastic modulus of normal human cortical bone [38–40]. Compared
to PEEK, PEKK has better thermal and dimensional stability. PEKK is easier to mold and
process, cheaper to produce, and has a wide range of mechanical properties [40].

Based on the bone-like stiffness of PEKK polymer, it is anticipated that by adding
HA in the synthesis process, HA/PEKK composites with an elastic modulus equivalent to
natural bone can be obtained without changing the molecular weight of PEKK, and at the
same time, the PEKK polymer has biological activity [28]. First, the successful synthesis
of PEKK without phase segregation in the formed PEKK/HA hybrid composite had to be
confirmed, and the fact that the added HA particles do not affect the molecular weight of
PEKK in the composite had to be demonstrated.

Figure 1 shows that the characteristic carbonyl peak of PEKK is observed for both pure
PEKK and PEKK/HA. This demonstrates that using HA as a starting material does not
affect the formation of the PEKK polymer. Both the infrared peak of HA and the infrared
peak of PEKK can be observed in the PEKK/HA complex, indicating that PEKK and HA
are contained in PEKK/HA complex. Neither the bands shift nor the new absorption bands
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are identified, suggesting that the lab-synthesized HA/PEKK composites are the mixture
of these two compounds without forming identifiable new chemical bonds.

The weight percentage of HA in the composites was determined based on the results
of X-ray photoelectron spectroscopy. Here, the calculation principle is that the carbon in
the composite only exists in the PEKK, while the calcium is only found in HA. As a result,
the carbon/calcium ratio reflects the content of HA in the composite. X-ray photoelectron
spectroscopy revealed a carbon/calcium ratio of 7.027:1 (Figure 2), and when the quantity
ratio is changed to a mass ratio, it is ~1:1, the content of HA is ~50 wt% in the composites
also changes, as hoped.

The HA particle distribution is another matter of concern. Therefore, SEM and TEM
are used to study how HA is distributed in PEKK matrix, and EDS is used to study whether
HA is evenly distributed in PEKK matrix without phase separation. It can be seen from the
SEM images (Figure 3) that HA is dispersed in PEKK polymer and exists in a granular state.
TEM graphs (Figure 4) show that HA particle filler is firmly wrapped in the PEKK matrix,
and the interface between HA filler and PEKK matrix is seamlessly and firmly combined.
As discussed above, carbon is unique to PEKK, while calcium is unique to HA, so their
distributions represent those of PEKK and HA, respectively. Figure 5 shows that carbon
and calcium are all well distributed in the composite, demonstrating that the distribution
of HA is homogeneous and free from phase segregation down to the micrometer, if not,
nanometer scale.

The next question that needed addressing is whether the added HA nanoparticles
affect the molecular weight of the PEKK. Accordingly, the molecular weight of the PEKK in
the composite was measured after removing the HA with hydrochloric acid. The results
shown in Figure 4 confirm that the added HA has no negative effect on the molecular
weight of the polymer matrix within a permissible margin of error.

Preparing a material with suitable mechanical properties was the major goal of this
work. As shown in Figure 5, the nanoindentation results revealed that the indentation
modulus and hardness of point E are 8.1 GPa and 0.29 GPa, respectively, which are very
different from other data values. The reason is that the HA content in the composite material
at this point is far less than that at other places, resulting in the indentation modulus and
hardness values being far less than those at other places. This test result also revealed that
adding HA will improve the mechanical properties of PEKK/HA composites. Therefore,
it is necessary to test five points for one sample to avoid the dispersion and contingency
of sample results. It can be concluded from Figure 5 that the indentation modulus of the
composite is 12.5 ± 2.5 GPa, and the hardness is 0.42 ± 0.09 GPa, both of which are similar
to natural human bone.

Furthermore, the data in Table 1 and Figure 5 show that the indentation modulus and
hardness vary with the depth of the indenter. To explain this phenomenon, two models of
the sample were constructed, as shown in Figure 8.
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According to the density of HA and PEKK, the distance between HA particles can be
calculated considering two ideal conditions:

SPEKK
SHA

=
VPEKK
VHA

=

MPEKK
ρPEKK
MHA
ρHA

=
ρHA

ρPEKK
=

3.10
1.29

(4)

H1:
H1 × L
R × L

=
SPEKK
SHA

(5)

H2:
(H2 + R)× R − π

4 R2

π
4 R2 =

SPEKK
SHA

(6)

Case H1: If all the HA rods are parallel to each other and to the surface of the sample,
the interparticle distance H1 = 144.2 nm

Case H2: If all the HA rods are parallel to each other but perpendicular to the surface
of the sample, the interparticle distance H2 = 100.4 nm.

In reality, the interparticle distances will vary from these ideal situations to a great ex-
tent, with some being much higher and some much lower. HA is also randomly distributed
in the matrix in all directions. Accordingly, the real distance will be intermediate between
the two ideals, i.e., somewhere between 100.4 and 144.2 nm.

The testing indenter is much shorter than the interparticle distance. As the indenter
penetrates from the surface of the testing sample into the bulk of the sample, the measured
hardness and indentation modulus will not be constant, instead depending on the local
structure around the indenter. So, the indentation modulus and hardness of the sample
will vary from sample to sample and from distance to distance, as shown in Figure 5.

The macro-mechanical properties of the composite are reflected by its nanoindentation
load and displacement curves. Based on the results, its yield strength was estimated. The
tested sections of the sample were examined by SEM, revealing highly deformed areas
containing elongated PEKK polymer strands, imparting excellent fracture toughness. Thus,
the newly developed hybrid is expected to be much tougher than natural bone.

The above data confirm that the newly developed PEKK/HA hybrid composite
exhibits good biomechanical compatibility and thus the potential of being used for dental
implants and other orthopedics. Furthermore, the established biocompatibility of PEKK
and bioactivity of HA indicate that the hybrid composite will be a good material for dental
implants owing to its biomechanical and biological compatibility [28].

5. Conclusions

Here, a new synthetic method for the production of a new class of polymeric inorganic
hybrid biomaterials with potential for dental implant applications and other orthopedic
applications owing to their excellent mechanical properties and biomechanical compatibility
was developed. The new hybrid biomaterial is a composite consisting of PEKK and HA.
Nanoparticulate HA was successfully employed as a starting material to load PEKK, and
the high HA loading of 50 wt%, which is close to that of natural human bone, was achieved.
Excellent homogeneity of HA distribution in the PEKK matrix was also achieved without
phase separation. Furthermore, the mechanical properties of the matrix are comparable
to those of human bone. The new hybrid composite has a higher yield strength than that
of natural bone as well as good ductility, making it tougher than natural bone. Therefore,
the new PEKK/HA biomaterial may serve as a base for a range of dental applications and
oral implantology.

Although the PEKK/HA composite exhibits excellent mechanical matching and bio-
compatibility with biological bone, there are still some issues to be addressed for its applica-
tion to human bone grafting, which are mainly concerned with the dispersion uniformity of
HA in the PEKK/HA complex; the difficulty of processing PEKK/HA into biological bone;
and the toxicology of PEKK/HA composite when introduced into a biological skeleton.
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