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Introduction: Observational studies have suggested that lipid profiles were associated
with risk of sleep apnea (SA). However, the specific lipid types and whether this
relationship has a causal effect are uncertain. This study conducted two-sample
Mendelian randomization (MR) and multivariable Mendelian randomization (MVMR) to
investigate the potential causal relationship between lipid profiles and risk of SA.

Materials and Methods: We used the largest genome-wide association study (GWAS)
on European participants on the UK Biobank. After a rigorous single nucleotide
polymorphism screening process to remove confounding effects, we performed MR
and MVMR to explore the causal relationship between lipid profiles and SA risk.

Results: Both MR and MVMR showed causal effects of increased triglyceride on SA risk
[MR: per 10 units, odds ratio (OR): 1.0156; 95% CI: 1.0057–1.0257; P value = 0.002;
MVMR: per 10 units, OR: 1.0229; 95% CI: 1.0051–1.0411; P value = 0.011]. The
sensitivity analysis including Cochran’s Q test, MR-Egger intercept, and MR pleiotropy
residual sum and outlier (MR-PRESSO) test indicated that our findings were robust.
The causal effects of triglyceride on SA did not change after adjusting for potential
confounders (obesity, age, sex, and airway obstruction).

Conclusion: Genetically increased triglyceride levels have independent causal effects
on risk of sleep apnea without the confounding effects of obesity, suggesting that
lowering triglyceride concentrations may help to reduce the risk of sleep apnea.

Keywords: genetics, sleep apnea, lipid profiles, multivariable Mendelian randomization, triglyceride

INTRODUCTION

Sleep apnea (SA) is defined as the absence of inspiratory airflow for at least 10 s during sleep (1) and
is associated with cardiovascular disease (2), stroke (3), diabetes (4), increased traffic accidents (5),
lost workdays (6), and even death (7). Thus, prevention of SA is necessary, as it might cause huge
social and personal burden.

Lipid profiles are an important component of human metabolism. Recent investigations have
focused on the potential link between lipid profiles and SA (8–11). Obstructive sleep apnea (OSA)
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is the most prevalent type of SA (2). A meta-regression analysis
reported that patients with OSA appeared to have elevated
levels of total cholesterol, triglyceride and low-density lipoprotein
(LDL), and decreased level of high-density lipoprotein (HDL)
(8). A twin study demonstrated that the co-occurrence of
OSA and hypertriglyceridemia had a genetic influence (9).
Another cross-sectional study reported that the association
between dyslipidemia and SA was limited to severe patients (10).
Despite previous studies suggesting there was an association
between lipid profiles and SA, the results were mainly based on
observational studies and meta-analyses, which were prone to
systematic bias and could not explore the causal relationship.

The causal relationship between lipid profiles and SA needs
to be further explored. There are challenges in carrying out this
exploration. The causal relationship between lipid profiles and
SA might be confounded by other factors. Obesity is associated
with lipid profiles (12) and is also considered to be a major factor
contributing to SA (11, 13). This makes it difficult to explain
whether the association is a causal relationship between lipid
profiles and SA or the relationship comes from their common
link with obesity. Additionally, common lipid profile test items
include triglyceride, LDL, HDL, apolipoprotein A-1 (ApoA-1),
and apolipoprotein B (ApoB). Their mutual influences may also
interfere with the exploration of specific components significantly
related to SA and lipid profiles. Mendelian randomization (MR)
has become a reliable method to estimate for causal relationship
(14) and is less prone to conventional confounding issues because
of random assortment of alleles (15). Recently, multivariable
Mendelian randomization (MVMR) has emerged as a method
that allows for simultaneous assessment of separate but correlated
exposures (16).

In this study, we extracted genetic instruments using summary
statistics from a large-scale genome-wide association study
(GWAS) on lipid profiles (triglyceride, LDL, HDL, ApoA-
1, and ApoB) and SA. We conducted two-sample MR to
investigate the causal relationship between lipid profiles and
risk of SA. We carried out MVMR to explore more strong
evidence for an independent causal effect of each component of
lipid profiles on SA.

MATERIALS AND METHODS

Selection of Data Sources
In this study, we performed two-sample MR as well as MVMR
analysis of lipid profiles (triglyceride, LDL, HDL, ApoA-1,
and ApoB) and SA using summary statistics from a large-
scale genome-wide association study (GWAS). All original
GWASs received ethical permission from corresponding ethics
committees, and related participants signed informed consent
(17). However, ethics permission was not required for the present
study because it was derived from summary statistical data.

Genetic datasets of lipid profiles (triglyceride, HDL, LDL,
ApoA-1, and ApoB) were retrieved from the largest GWAS
(sample size: triglyceride: N = 441,016, HDL: N = 403,943, LDL:
N = 440,546, ApoA-1: N = 393,193, and ApoB: N = 439,214),
whose participants were of white European ancestry, on the

UK Biobank (UKB) (17, 18). We selected all single nucleotide
polymorphisms (SNPs) that reached genome-wide significance
(P < 5 × 10−8), removed relative SNPs with stringent linkage
disequilibrium (LD) (19) (default of the LD_clump function:
R2 = 0.001, clumping window = 10,000), and obtaining the
primary instrumental variables: triglyceride, HDL, LDL, ApoA-
1, and ApoB. The primary instrumental variables, triglyceride,
HDL, LDL, ApoA-1, and ApoB, consisted of 313, 362, 177,
299, and 198 SNPs, respectively. Because a large number of
studies have shown that obesity is one of the main factors
causing SA (11, 13, 20, 21) and that the occurrence of obesity
is closely related to lipid metabolism (12, 22), we pruned all
SNPs related to obesity from the primary instrumental variables
to remove the confounding effects of obesity. We searched the
traits of all the preliminary screened SNPs from PhenoScanner,
which is a database of human genotype-phenotype associations.1

The following traits were selected as potential confounders
because they are associated with obesity: body mass index,
whole body fat mass, weight, and body fat percentage. SNPs
that were not found on PhenoScanner were also removed
(no search results). After the removal of SNPs associated
with the potential confounders, 255, 305, 158, 237, and 169
SNPs remained in the instrumental variables triglyceride, HDL,
LDL, ApoA-1, and ApoB, respectively. The screened SNPs
associated with the potential confounders can be viewed online
in Supplementary Table 1.

We used the data of SA from the MR-data database (23).2

We searched using “sleep apnea” as the keyword, selecting data
that used participants of European descents in the database.
We chose the largest sample size datasets of SA in the MRC
Integrative Epidemiology Unit (MRC-IEU) consortium3 from
the UKB (18) (dataset ID: ukb-b-7853, N = 463,010, diagnosis:
sleep apnea). Apnea-hypopnea index (AHI) is defined as the
frequency of obstructive or mixed apnea or hypopnea per hour
and is the disease-defining threshold for laboratory diagnosis of
sleep apnea obtained by laboratory polysomnography test (24,
25). The diagnosis of SA is determined by AHI > 5/h for adults
(26). Pediatric SA is diagnosed as AHI ≥ 1/h or obstructive
hypoventilation, manifested by Pa CO2 > 50 mm Hg for 25% of
sleep time, coupled with snoring, paradoxical thoracoabdominal
movement, or flattening of nasal airway pressure waveform (27).

We extracted the SNPs of the instrumental variables of lipid
profiles (triglyceride, HDL, LDL, ApoA-1, and ApoB) from the
dataset of sleep apnea and excluded palindromic SNPs, acquiring
106, 120, 63, 94, and 59 SNPs, respectively. The whole process of
extracting SNPs is shown in Figure 1. The final extracted SNPs
can be viewed online in Supplementary Table 2.

Mendelian Randomization Analysis
We conducted five independent two-sample MR analyses to
evaluate the potential causal relationship between lipid profiles
(triglyceride, HDL, LDL, ApoA-1, and ApoB) and risk of SA. MR
analysis is based on the following three assumptions (28, 29): (1)

1http://www.phenoscanner.medschl.cam.ac.uk/
2https://gwas.mrcieu.ac.uk/
3http://www.bristol.ac.uk/integrative-epidemiology/
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FIGURE 1 | Whole process of extracting single nucleotide polymorphisms (SNPs).

FIGURE 2 | Schematic representation of two-sample Mendelian randomization.

the genetic variables must be closely related to the exposure, (2)
the variables must affect the outcome only through their effects
on the exposure, and (3) the variables must be independent of
any confounding factors of the association between the exposure
and the outcome (Figure 2).

We performed an inverse variance-weighted (IVW) meta-
analysis of each Wald ratio for each SNP (15). Applying
fixed effects IVW requires the assumption that there is no
heterogeneity or horizontal pleiotropy in the SNPs (15). We
also used maximum likelihood method to estimate the causal
effect. The method maximized the likelihood given the SNP-
exposure and the SNP-outcome effects directly and assumed a
linear regression between the exposure and the outcome (15).
Leave-one-out, scatter, forest, and funnel plots were produced to
illustrate the results.

We conducted multivariate Mendelian randomization
(MVMR) to eliminate the interaction among the selected
exposures (triglyceride, HDL, LDL, ApoA-1, and ApoB) that
could be confounding factors (16) (Figure 3). For the MVMR
analysis, we excluded any SNPs with LD (R2 > 0.001, clumping
window = 10,000) and SNPs being palindromic with intermediate
allele frequencies, retaining 433 SNPs. In addition, it should be

considered that SA is also closely related to age, gender, and
airway obstruction. Therefore, after finding the specific lipid type
with significant causal effects on SA from the lipid profiles, we
conducted a multivariable Mendelian randomization analysis
to analyze its effects on SA adjusted for age, gender, and airway
obstruction. As no available GWAS on age could be found, we
used telomere length as substitute for age, because a wide range
of studies have manifested that telomere length is largest at birth
and decreases with age, and that it is a biomarker of aging (30).
Therefore, the traits of GWAS representing age, gender, and
airway were telomere length, genetic sex, and chronic obstructive
airway disease, respectively. The GWASs mentioned above were
from the MR-data database (see text footnote 2) (23). The dataset
IDs of the three GWASs are as follows: ieu-b-4879 (telomere
length), ukb-d-is_female (sex), and ukb-b-13447 (obstructive
airway disease). All the analyses were performed using R version
4.0.5 (RStudio).

Sensitivity Analysis
To further assess the robustness of the findings, we performed
a Cochran’s Q test to assess the heterogeneity between the
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FIGURE 3 | Schematic representation of multivariable Mendelian randomization.

TABLE 1 | Mendelian randomization estimates lipid profiles and sleep apnea.

Inverse-variance weighted method

Traits (per 10 units) N F R2 OR 95% CI P-Value

TG 106 31.7032 0.0157 1.0156 1.0057–1.0257 0.002

HDL 120 24.1751 0.0186 1.0031 0.9931–1.0132 0.544

LDL 63 26.6363 0.0094 1.0043 0.9920–1.0168 0.494

ApoA-1 94 31.1115 0.0187 1.0051 0.9957–1.0146 0.289

ApoB 59 21.1138 0.0082 1.0031 0.9908–1.0156 0.623

Maximum likelihood method

Traits

TG 1.0157 1.0059–1.0256 0.001

HDL 1.0031 0.9939–1.0124 0.508

LDL 1.0044 0.9929–1.0160 0.456

ApoA-1 1.0051 0.9961–1.0141 0.267

ApoB 1.0031 0.9907–1.0156 0.623

genetic variables (31). Horizontal pleiotropy occurs when genetic
instruments are associated with more than one independent
biological pathway, which can lead to a violation of the
fundamental assumption of the MR study (i.e., the variable is not
related to the outcome other than via the confounding factors)
(32). We conducted an MR–Egger intercept test to evaluate
the horizontal pleiotropy (33). An MR pleiotropy residual
sum and outlier (MR-PRESSO) test was performed to provide
outlier removal, verify the results, and assess the horizontal
pleiotropy (34). We applied F statistic to evaluate instrument
strength (35). F statistic was calculated with the formula (35)
F = (N − k − 1)/N × R2/(1 − R2) (N = sample size, k = the
number of selected SNPs, R2 represents the phenotype variance
induced by the SNPs.) When R2 is not available, we used the
formula R2 = 2 × MAF × (1 − MAF) × (beta/SD)2 (beta = the
effect value of the genetic variant in the exposure (35), MAF = the
effect allele frequency (30), SD (standard deviation) = SE ×

√
N,

SE = the standard error of the genetic variant in the exposure,
N = sample size).

RESULTS

Mendelian Randomization Estimates
The evaluation for the association between lipid profiles and SA
risk is shown in Table 1. The two-sample MR analysis found
that increased triglyceride levels showed a causal association
with risk of SA based on inverse-variance weighting. The OR
(odds ratio) indicated that a 10-unit increase in triglyceride was
causally associated with a 1.56% increase in SA risk (Table 1,
triglyceride: N = 106 SNPs, OR: 1.0156, 95% CI: 1.0057–1.0257,
P = 0.002). No causal relationship was found between the other
lipids (HDL, LDL, ApoA-1, and ApoB) and SA risk (Table 1,
HDL: N = 120 SNPs, OR: 1.0031, 95% CI: 0.9931–1.0132,
P = 0.544; LDL: N = 63 SNPs, OR: 1.0043, 95% CI: 0.992–1.0168,
P = 0.494; ApoA-1: N = 94 SNPs, OR: 1.0051, 95% CI: 0.9957–
1.0146, P = 0.289; ApoB: N = 59 SNPs, OR: 1.0031, 95% CI:
0.9908–1.0156, P = 0.623). The maximum likelihood method
showed similar results (Table 1, triglyceride: OR = 1.0157, 95%
CI: 1.0059–1.0256, P = 0.001; HDL: OR = 1.0031, 95% CI:
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TABLE 2 | Multivariable Mendelian randomization estimates lipid profiles
and sleep apnea.

Traits (per 10 units) N = 433 OR 95% CI P-Value

TG 1.0229 1.0051–1.0411 0.011

HDL 1.0128 0.9708–1.0565 0.556

LDL 1.0040 0.9463–1.0651 0.895

ApoA-1 0.9902 0.9498–1.0323 0.642

ApoB 0.9866 0.9320–1.0444 0.641

0.9939–1.0124, P = 0.508; LDL: OR = 1.0044, 95% CI: 0.9929–
1.016, P = 0.456; ApoA-1: OR = 1.0051, 95% CI: 0.9961–1.0141,
P = 0.267; ApoB: OR = 1.0031, 95% CI: 0.9907–1.0156, P = 0.623).
In the MVMR analysis, increased triglyceride still showed a causal
effect on SA risk and the OR of the MVMR indicated that a
10-unit increase in triglyceride was causally associated with a
2.29% increase in SA risk (Table 2, triglyceride, OR: 1.0229,
95% CI: 1.0051–1.0411, P = 0.011; HDL, OR: 1.0128, 95% CI:
0.9708–1.0565, P = 0.556; LDL, OR: 1.004, 95% CI: 0.9463–
1.0651, P = 0.895; ApoA-1, OR: 0.9902, 95% CI: 0.9498–1.0323,
P = 0.642; ApoB, OR: 0.9866, 95% CI: 0.932–1.0444, P = 0.641).
In the MVMR analysis related to age, sex, and airway obstruction,
the causal effects of triglyceride on SA adjusted for age, gender,
and upper airway obstruction were still significant (triglyceride
adjusted for telomere length, OR: 1.0142, 95% CI: 1.005–1.0234;
triglyceride adjusted for genetic sex, OR: 1.0169, 95% CI: 1.0082–
1.0256; triglyceride adjusted for obstructive airway disease, OR:
1.0171, 95% CI: 1.0086–1.0256). The scatter plots illustrated the
causal relationship between triglyceride and SA risk (Figure 4).
The leave-one-out plots of triglyceride illustrated that even if any
SNP in the instrumental variables was removed, the rest of the
data could still achieve a significant causal effect (Figure 5). The
forest plots showed causal effects of triglycerides on risk of SA,
and all the funnel plots showed no asymmetry (Supplementary
Figures 1, 2). In addition, the F statistics of all the instrumental
variables were greater than 10.

Sensitivity Analysis
The Q variable showed no heterogeneity for the analysis of
triglyceride, HDL, LDL, ApoA-1, and ApoB and SA (Table 3, MR-
Egger Q, triglyceride: P = 0.427, HDL: P = 0.068, LDL: P = 0.159,
ApoA-1: P = 0.224, and ApoB: P = 0.659). The MR-Egger
intercept did not find significant horizontal pleiotropy for all the
analyses mentioned above (Table 3, Egger intercept, triglyceride:
P = 0.086, HDL: P = 0.458, LDL: P = 0.705, ApoA-1: P = 0.611, and
ApoB: P = 0.949). The MR-PRESSO showed no outliers in all the
instrumental variables. The estimates of the MR-PRESSO found
causal effects of increased triglycerides on SA risk, in agreement
with the results of the IVW and maximum likelihood methods
(Table 4, triglyceride: P = 0.019, HDL: P = 0.494, LDL: P = 0.702,
ApoA-1: P = 0.292, and ApoB: P = 0.597).

DISCUSSION

In this study, we applied both two-sample Mendelian
randomization (MR) and multivariable Mendelian

randomization (MVMR) to demonstrate a causal relationship
between genetically increased triglyceride and risk of sleep apnea
(SA). The estimates of heterogeneity and horizontal pleiotropy
showed that our results were robust. The finding of the MR-
PRESSO was in agreement with the inverse variance weighting
(IVW) and maximum likelihood, further strengthening the
robustness of our results. The MR-PRESSO estimates found
no outliers, which indicated the stability of our instrumental
variables. The F statistics of all the instrumental variables were
greater than 10, showing a strong association between the SNPs
and the exposure with sufficient statistical power (35).

Many previous studies have demonstrated the association
between risk of SA and lipid profiles including LDL, HDL and
triglyceride (8–10, 36, 37). Continuing from previous relative
studies, our findings showed causal effects of triglycerides on risk
of SA on the basis of MR analysis. To our knowledge, this study is
the first to investigate the relationship between lipid profiles and
SA risk from the perspective of causality.

Our study revealed that the specific lipid causing SA was
triglyceride, which is consistent with a variety of previous
studies. For example, a study evaluating the association between
triglyceride-glucose index (TyG index) and OSA found that
higherTyG index was independently associated with increased
OSA risk (OR = 3.348, 95% CI = 1.081–10.372, P < 0.05) (38).
TyG was calculated using the following equation: ln [fasting
triglyceride (mg/dl) × fasting glucose (mg/dl)/2]. The study also
suggested a predictive role of TyG in OSA onset. Another study
evaluated the visceral adipose tissue (VAT) and subcutaneous
adipose tissue (SAT) of 41 participants with OSA (22 men
and 19 women) and 39 controls (20 men and 19 women).
In the men, apnea was associated with VAT, whereas in the
women it was associated with subcutaneous, visceral, and total
fats (39). These findings suggested the need for sex-specific
therapeutic strategies such as reduction of visceral fat through
exercise or pharmacological treatment in men and weight loss
in women. In another study, Lebkuchen et al. used metabolomic
and lipidomic strategies to select potential biomarkers for OSA.
From 22 lipids initially selected, glycerophosphoethanolamines,
sphingomyelin, and lyso-phosphocholines proved to be best
associated with OSA and were considered to be potential early
biomarkers in OSA screening (40). In terms of mechanisms
linking lipids with OSA, a study assessed the AHI, inflammatory
factors, and precise body fat of 392 adolescents to explore
the mediation effects of systemic inflammation in the linkage
between visceral adiposity and incident OSA. The study found
that 42% of the association between visceral fat and OSA in
the adolescents was mediated by interleukin-6 (IL-6) (P = 0.03),
and that 82% of the association was mediated by C-reactive
protein (CRP) (P = 0.01), suggesting that inflammation is a
mediator in the causal relationship between body fat and SA (41).
The studies mentioned above conducted various laboratory tests
and manifested the link between lipids and SA, which makes
our conclusion more convincing and robust, and pointed out
directions for future research.

The underlying mechanisms linking triglyceride and SA
can be classified into two parts: anatomical pathways and
pathophysiological pathways (Figure 6). Triglyceride is any of
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FIGURE 4 | Scanner plot. (A) Triglyceride, (B) high-density lipoprotein, (C) low-density lipoprotein, (D) apolipoprotein A-1, and (E) apolipoprotein B.
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FIGURE 5 | Leave-one-out plot. (A) Triglyceride, (B) high-density lipoprotein, (C) low-density lipoprotein, (D) apolipoprotein A-1, and (E) apolipoprotein B.

a class of compounds that consist of an ester of glycerol with
three fatty acids. Most natural fats and oils are triglycerides.
When blood triglyceride level is elevated, there is an excessive
triglyceride deposit on various parts of the human body. The

accumulation of triglyceride from blood is the key point in the
linkage between blood triglyceride level and SA. Three kinds of
triglyceride accumulation constitute the anatomical pathways.
(1) Oral and pharyngeal triglyceride accumulations narrow the
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TABLE 3 | The estimates of Q test and MR-Egger intercept.

Traits Q test (Q P-Value) MR-Egger intercept
(P-Value)

TG 0.427 0.086

HDL 0.068 0.458

LDL 0.159 0.705

ApoA-1 0.224 0.611

ApoB 0.659 0.949

airway directly (42–45). The fat tissue under the mandible, in the
tongue, soft palate, and uvula largely compresses the anatomical
space for respiration in the oral cavity and pharynx. Patients are
able to compensate for the upper airway narrowing by increasing
the activity of upper airway muscles during wakefulness.
However, this protective effect is lost during sleep because of
relaxation of muscles (42). (2) Abdominal fat accumulation
including subcutaneous fat and visceral fat that surround visceral
organs in the abdominal cavity markedly increases abdominal
pressure, leading to reduction in lung volume. Reduction of lung
volume may decrease longitudinal tracheal traction forces and
pharyngeal wall tension, which is predisposed to narrowing of the
airway (46). (3) Neck fat accumulation increases the collapsibility
of the upper airway, decreases the efficiency of dilator muscle
contraction (47), and leads to sarcopenia, denervation, and
skeletal muscle dysfunction. These changes are also linked with
upper airway narrowing and SA (48).

Visceral and vascular triglyceride accumulations are crux of
pathophysiological pathways. Higher levels of visceral fat have
been observed in both obese and non-obese men with OSA,
even when matched with controls for age and BMI (39, 49).
When blood triglyceride level is elevated, adipocytes in visceral
fat tissues grow quite large before dividing (50), and the size
of lipid droplets in adipocytes increases a lot. The change
makes visceral adipose tissues have more glucocorticoid and
adrenergic and androgen receptors, and become more susceptible
to glucocorticoid, catecholamine, and androgen signaling (51).
In addition, adipocytes with abnormal large lipid droplets
uptake glucose at a high rate and develop to insulin resistance
(52). Insulin resistance represents an important mechanism of
cardiometabolic dysfunction, and SA has long been considered
as a common epiphenomenon of cardiometabolic dysfunction.
In addition, along with weight gain, adipocytes themselves begin
secreting tumor necrosis factor α (TNF-α). TNF-α stimulates

surrounding endothelial cells to produce monocyte chemoattract
protein-1 (MCP-1), which promotes macrophage recruitment.
Macrophages secret many kinds of cytokines including IL-
6 and IL-1. As a result, plasma CRP and other kinds of
acute phase reactive proteins are elevated, triggering systemic
inflammation (53, 54). Inflammatory response plays a causal role
in metabolic dysregulation and subsequent development of SA.
Excessive blood triglyceride can also deposit in blood vessels
directly, especially where endothelia are destroyed. This kind of
deposition is a main trigger of atherosclerotic plaque formation,
leading to atherosclerosis and arterial stiffness. Atherosclerosis
exacerbates organ ischemia and hypoxia, which is one of the main
causes of various cardiovascular diseases. Again, cardiometabolic
dysregulation is triggered in this pathway, and then SA happens
(55, 56).

We have clarified how triglycerides play a causal role in
the pathogenesis of SA and why LDL, HDL, ApoA-1, and
ApoB have no causal effects on SA needs to be explained. The
reasons can be listed as follows: 1. Triglycerides are hydrophobic,
non-polar neutral molecules. This kind of structure makes
triglycerides water-insoluble and easy to get together and deposit
in extracellular fluid. However, HDL, LDL, ApoA-1, and ApoB
have hydrophilic polar groups. HDL and LDL have a central
hydrophobic core of non-polar lipids, primarily cholesterol
esters and triglycerides. The hydrophobic core is surrounded
by a hydrophilic membrane consisting of phospholipids, free
cholesterol, and apolipoproteins directed outward (57). ApoA-
1 and ApoB also have hydrophilic amino acid sequences (58).
The hydrophilic parts make them soluble in the salt-water-
based internal environment. Therefore, even if the levels are
elevated, it is hard for them to deposit and accumulate in the oral
cavity, pharynx, neck, and abdomen to narrow the airway, and
neither can they form fat tissues to cause metabolic dysregulation
like triglycerides. In brief, their hydrophilic structures suggest
that they are not able to have an obvious direct causal effect
on SA like triglycerides. 2. The function of LDL and HDL is
transporting cholesterol instead of triglycerides. ApoA-1 and
ApoB are major apolipoproteins of HDL and LDL, respectively
(59). Fluctuation in levels of LDL and HDL has a direct influence
on the level of cholesterol but hardly affects triglycerides. In
terms of lipid component, triglycerides only account for 12%
of total lipid content of both LDL and HDL, while cholesterol
esters account for 59 and 40% of total lipid content of LDL
and HDL, respectively (60). Cholesterol, the major core lipid of
LDL and HDL, is an essential structural component of the cell

TABLE 4 | Mendelian randomization pleiotropy residual sum and outlier test (MR-PRESSO) estimates between lipid profiles and SA.

Raw estimates Outlier-corrected estimates

Traits (per 10 units) N OR 95% CI P-Value OR 95% CI P-Value

TG 106 1.0118 1.0020–1.0216 0.019 NA NA NA

HDL 120 1.0035 0.9936–1.0135 0.494 NA NA NA

LDL 63 1.0023 0.9904–1.0144 0.702 NA NA NA

ApoA-1 94 1.0050 0.9957–1.0143 0.292 NA NA NA

ApoB 59 1.0031 0.9916–1.0148 0.597 NA NA NA
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FIGURE 6 | Underlying mechanisms linking triglyceride with sleep apnea.

membrane, where it is required to establish proper membrane
permeability and fluidity (61). In addition, cholesterol is an
important component for the manufacture of steroid hormones,
bile acids, and vitamin D (62). Cholesterol also has hydrophilic
group (-OH) and is not as easy as to accumulate as triglycerides.
Therefore, the physiological function of HDL, LDL, ApoA-1,
and ApoB suggests that they are unlikely to cause SA indirectly
through triglyceride pathways.

From the perspective of diet, the content of triglycerides in the
body is directly related to the intake of exogenous glucose and
fats, which suggests that reducing the risk of SA can be achieved
by decreasing the intake of exogenous triglycerides. Relative
studies reported that the optimal diet consisting of not more
than 50–60% carbohydrate sources, comprising mostly complex
carbohydrates such as whole grains and fruits and vegetables,
was an effective management to lower triglyceride concentrations
(63). Besides optimal diet, regular aerobic exercise, avoiding
alcohol abuse, and drug treatment including fibrates, omega-3
fatty acids, niacin, and statins were also important factors in the
prevention and treatment of hypertriglyceridemia (63).

It should be noted that obesity is a major factor leading to the
occurrence of SA, which has been confirmed by a large number
of studies (11, 64, 65). Furthermore, a study on an MR analysis
reported causal effects of obesity on risk of SA (66). Many studies
reported a strong association between lipids levels and obesity
(67, 68). Two reviews pointed out that obesity was an important
factor increasing the prevalence of hypertriglyceridemia (67, 68).
Therefore, we considered the impact of obesity in the causal
effects of triglycerides on the risk of SA. Before the MR analysis,
we searched all the traits of SNPs in the primary instrumental
variables from PhenoScanner and excluded all SNPs related to
obesity. The removed SNPs are shown online in Supplementary
Table 1. Through this procedure, we demonstrated that the causal

impact of triglycerides on risk of SA was significant without the
confounding effects of obesity.

The interaction between lipid profiles should also be
considered. MVMR analysis removes interfering factors
effectively. By MVMR, we also found significant causal effects
of genetically increased triglycerides on risk of SA, but no
significant causal relationship was found with HDL, LDL,
ApoA-1, and ApoB. The results provided stronger support for
the causal relationship we found. In addition, we also considered
that SA might be influenced by age, sex, and airway obstruction.
The related multivariable Mendelian randomization analysis
indicated that the causal effects of triglycerides on SA were
not affected by the confounding factors, namely, age, sex, and
airway obstruction.

One limitation of our study was that although the sensitivity
analysis did not detect horizontal pleiotropy, confounding and
pleiotropic factors may still exist (31). For example, we only
removed SNPs related to the trait obesity, because we only
found a causal relationship between obesity and SA risk in
previous studies based on MR analysis (66). However, SA
might be associated with many systemic diseases (2–4), and the
incorporated SNPs in the lipid profile instruments might still
impact SA risk through other ways. Another limitation was that
our study was mainly based on a GWAS, whose participants
were European, on the UK-Biobank, and different types of studies
based on other populations need to be further analyzed.

CONCLUSION

The present study demonstrates the independent causal effects of
genetically increased triglycerides on risk of sleep apnea without
the confounding effects of obesity by two-sample Mendelian
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randomization and multivariable Mendelian randomization, and
suggests that lowering triglyceride concentration contributes to
the reduction in risk of sleep apnea.
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